日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫FN6806、代做c/c++,Python程序語言
代寫FN6806、代做c/c++,Python程序語言

時間:2024-12-20  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



FN6806: Object Oriented Programming II
Problems - Set 3
Question 3-1
Implement Vasicek model for interest rate simulation

• Use Euler-Maruyama method to generate the paths. returned value is a tuple: 1) the end
rates of all paths, 2) the sum of all rates of all paths (except the starting   0
).
• You could use either vector or valarray for the result.
auto vasicek(double sd, double kappa, double r_mean, double r0,
double T, int paths, int steps, mt19937 &gen) {
double dt = T / steps;
vector<double> sum_rates(paths);
vector<double> end_rates(paths);
^^.
return make_tuple(end_rates, sum_rates);
}
auto vasicek_valarray(double sd, double kappa, double r_mean,
double r0, double T, int paths, int steps, mt19937 &gen) {
double dt = T / steps;
valarray<double> sum_rates(0.0, paths);
valarray<double> end_rates(r0, paths);
^^.
return make_tuple(end_rates, sum_rates);
}
• Below is my test code and result as reference. You could adapt it to test your result.
seed_seq seed{**127};
auto mtgen = mt19937{seed};
auto [end_rates, sum_rates] =
vasicek(sd, kappa, r_mean, r0, T, 20'000, int(0.5 * 365),
mtgen);
auto end_rates_avg =
accumulate(end_rates.begin(), end_rates.end(), 0.0) /
end_rates.size();
1auto sum_rates_avg =
accumulate(sum_rates.begin(), sum_rates.end(), 0.0) /
sum_rates.size();
cout ^< end_rates_avg ^< ", " ^< sum_rates_avg ^< "\n";
^/ 0.0495695, 9.05915
mtgen.seed(seed);
auto [end_rates2, sum_rates2] =
vasicek_valarray(
sd, kappa, r_mean, r0, T, 20'000, int(0.5 * 365), mtgen);
end_rates_avg =
accumulate(end_rates2.begin(), end_rates2.end(), 0.0) /
end_rates2.size();
sum_rates_avg =
accumulate(sum_rates2.begin(), sum_rates2.end(), 0.0) /
sum_rates2.size();
cout ^< end_rates_avg ^< ", " ^< sum_rates_avg ^< "\n";
^/ 0.0495608, 9.06302
2Question **
A simulator for event-driven backtesting.
There are two approaches in backtesting trading strategy: vectorized and event-driven.
The vectorized approach is the most common one and consists of simulating the strategy directly
 on historical data. The price series are loaded as vectors and we use vectorized operations
 for both the trading strategy and the performance metrics.
For example, we can have a buy signal whenever Close > Open and sell signal whenever Close
< Open, and porformance metric is the **day lagged signal times the return of the next day
(assuming buy at next day Open). It’s fast to implement such backtesting. However, if we want
to simulate for adding the number of orders when we have 2nd buy signal, we need to modify
the algorithm but it will not be easy. Vectorized method can not simulate the execution of
orders realistically. At all, it is a simpliffed approach towards backtesting.
The event-driven approach is more sophiscated as it simulates the strategy as if it was executed
in real-time. The price series are loaded as a stream of ticks and the strategy is executed on
each tick, and various modules can be added at both sides: the exeuction side and the strategy
 side. For example, the exeuction could simulation the price slippage of the execution, the
strategy side could simulate for stop loss and dynamic order sizing depends on past performance.
The event-driven approach is more ffexible and more realistic, but it is more difffcult
to implement.
In this exercise, you will read the source code of an event-driven simulator and try to understand
 how it works. You will need to document 5 places that exception could occur, what is the
error message, what could be the cause of the error and what could be the exception handling.
Create a ffle exceptions.txt and write down your answers.
This project will also be used in the Final quiz, so you should get familiar with it.
About the simulator:
• The author of this repo only made a start so it’s just a partial implementation. You would
ffnd many rough edges: incomplete and incorrect.
• In one-line explaination, it runs over a CSV ffle with each line as a tick. The trading
strategy acts on the tick data and perform buy/sell operations.
• All cpp ffles are in \src
• All hpp ffles are in \include
Use Replit tools
• When you press Run button, the program shasll run in the Console. However, you need
to scroll back in history for the output.
• You could use Code Search (Shortcut: Ctrl+Shift+F) to search for text in the project.
• For manual mode, usually you don’t need to, you could open the Shell tool to type make
for compilation and then type ./main to run the program. make shall auto-detect any
recently changed ffle and recompile the program. If you want to recompile every thing,
make clean and then make.
3Aku’s class organization
• I created a simple chart to show the class organization of Aku’s simulator. You could use
it as a reference.
4

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:代寫INFS2044、代做Python設計編程
  • 下一篇:CHC5028代做、代寫C/C++設計編程
  • ·代寫CS-UY 4563、Python程序語言代做
  • ·&#160;COMP338編程代做、代寫Python程序語言
  • ·CDS523編程代寫、代做Python程序語言
  • ·COMP0035代做、代寫python程序語言
  • ·代寫2530FNW、代做Python程序語言
  • ·代寫CIS5200、代做Java/Python程序語言
  • ·代寫CS 417編程、代做Python程序語言
  • ·代做ELEC5307、python程序語言代寫
  • ·COMP5328代做、代寫Python程序語言
  • ·CMP5321代做、代寫Python程序語言
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产精品成人播放| 国产精品久久久久av免费| 欧美精品久久久久久久免费观看| 男女视频一区二区| 亚洲国产精品悠悠久久琪琪| 日韩午夜剧场| 欧美精品日韩| 亚洲精品乱码久久久久久黑人| 国内精品视频久久| 欧美破处大片在线视频| 国产一级精品aaaaa看| 亚洲一区二区三区视频| 欧美国产日韩二区| 欧美日韩免费一区二区三区视频| 国产精品入口尤物| 久久一本综合频道| 国产自产2019最新不卡| 亚洲欧美中文在线视频| 欧美精品在线一区二区| 国产亚洲一区在线| 国产精品久久久久久一区二区三区| 模特精品在线| 国产精品免费在线| 国产精品久久久对白| 久久av老司机精品网站导航| 伊人精品在线| 宅男精品视频| 欧美另类极品videosbest最新版本| 国产精品欧美精品| 亚洲最新视频在线播放| 亚洲国产99精品国自产| 欧美日韩精品一区二区| 久久精品国产久精国产思思| 国产在线精品一区二区夜色| 亚洲专区一二三| 欧美—级a级欧美特级ar全黄| 亚洲网站啪啪| 国产一区二区精品在线观看| 麻豆av一区二区三区| 欧美风情在线观看| 亚洲美女色禁图| 伊人精品在线| 在线亚洲+欧美+日本专区| 国产精品99久久久久久久女警| 99在线热播精品免费99热| 亚洲第一福利视频| 亚洲国产精品va在看黑人| 久久久精品免费视频| 精品不卡一区| 国产一区二区三区四区三区四| 亚洲电影av在线| 久久激情综合| 欧美91福利在线观看| 国产精品夜夜夜一区二区三区尤| 有码中文亚洲精品| 欧美精品一区二区三区蜜桃| 国产色产综合产在线视频| 欧美成人国产va精品日本一级| 久久久91精品国产一区二区三区| 亚洲免费伊人电影在线观看av| 午夜视频一区二区| 久久成人精品无人区| 亚洲第一精品福利| 欧美高清视频一区二区三区在线观看| 国产视频在线观看一区二区三区| 牛夜精品久久久久久久99黑人| 亚洲精选中文字幕| 亚洲综合成人婷婷小说| 国产精品视频免费观看www| 欧美亚洲一区二区在线| 亚洲国产成人精品久久久国产成人一区| 在线成人国产| 国产精品永久免费观看| 一本色道久久综合狠狠躁篇的优点| 国产精品久久久久99| 亚洲欧美激情视频在线观看一区二区三区| 久久久久久久999| 国产欧美婷婷中文| 欧美中文字幕视频| 欧美区视频在线观看| 国内揄拍国内精品久久| 亚洲视频一区二区| 久久久精品国产免大香伊| 国产精品99久久久久久宅男| 欧美手机在线| 狠狠色丁香久久婷婷综合_中| 国产女人水真多18毛片18精品视频| 国产一区二区主播在线| 欧美日韩国产欧美日美国产精品| 浪潮色综合久久天堂| 99精品福利视频| 亚洲一区二区成人在线观看| 一区二区三区导航| 国产精品乱码妇女bbbb| 欧美日韩国产综合视频在线观看| av成人国产| 国产一区二区精品丝袜| 亚洲网站在线播放| 久久精品视频免费| 欧美日韩18| 99国产精品久久久久久久成人热| 国产欧美日韩一区二区三区在线| 久久夜精品va视频免费观看| 精品二区久久| 亚洲女性喷水在线观看一区| 亚洲一区欧美激情| 欧美在线关看| 亚洲一区观看| 国产亚洲视频在线| 亚洲日本一区二区| 欧美日韩一区二区三区在线视频| 国内精品久久久久伊人av| 久久婷婷av| 亚洲第一综合天堂另类专| 禁断一区二区三区在线| 国产日韩欧美在线观看| 久久丁香综合五月国产三级网站| 欧美日本国产精品| 国产精品亚洲一区| 伊人婷婷欧美激情| 亚洲一区二区三区免费视频| 亚洲免费观看| 国产精品久久久久久久久免费| 国内精品久久久久影院薰衣草| 亚洲精品一品区二品区三品区| 国内外成人在线| 国模大胆一区二区三区| 国产女人水真多18毛片18精品视频| 国产精品一二一区| 国产精品中文在线| 久久综合福利| 久久免费视频在线| 99精品视频免费全部在线| 国产一区二区av| 亚洲人成人一区二区在线观看| 久久尤物电影视频在线观看| 欧美激情91| 好吊妞**欧美| 国产精品成人免费| 在线日本高清免费不卡| 91久久精品国产91久久| 国产精品xxxav免费视频| 欧美精品国产一区二区| 亚洲欧美中文在线视频| 国产人久久人人人人爽| 一区二区三区精品国产| 亚洲成人在线视频网站| 日韩视频免费在线| 欧美电影在线观看| 欧美日韩岛国| 亚洲乱码国产乱码精品精天堂| 午夜精品久久久久久久99樱桃| 99国产精品视频免费观看一公开| 一区二区三区福利| 一区二区日韩免费看| 国际精品欧美精品| 久久精品免费播放| 一本色道88久久加勒比精品| 欧美欧美天天天天操| 欧美在线免费视屏| 欧美一级艳片视频免费观看| 国产美女一区二区| 国产美女一区二区| 国产精品久久久久久一区二区三区|