日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INFS2044、代做Python設計編程
代寫INFS2044、代做Python設計編程

時間:2024-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



INFS2044 Assignment 2 Case Study 
 
In this assignment, you will be developing a system for finding images based on the objects 
present in the images. The system will ingest images, detect objects in the images, and 
retrieve images based on labels associated with objects and by similarity with an example 
image. 
 
Use Cases 
 
The system supports the following use cases: 
 
• UC1 Ingest Image: User provides an image, and System stores the image, identifies 
objects in the image, and records the object types detected in the image in an index. 
 
• UC2 Retrieve Objects by Description: User specifies a list of object types, and the 
system returns the images in its index that match those listed. The system shall 
support two matching modes: 
 
o ALL: an image matches if and only if an object of each specified type is 
present in the image 
o SOME: an image matches if an object of at least one specified type is present 
in the image 
 
• UC3 Retrieve Similar Images: User provides an image, and the system retrieves the 
top K most similar images in order of descending similarity. The provided image may 
or may not already be in the system. The similarity between two images is 
determined based on the cosine similarity measure between the object types 
present in each image. The integer K (K>1) specifies the maximum number of images 
to retrieve. 
 
• UC4 List Images: System shows each image and the object types associated with 
each image in the index. 
 
 
 Example Commands 
 
The following are example commands that the command line frontend of the system shall 
implement: 
 
UC1: 
 
$ python image_search.py add example_images/image1.jpg 
Detected objects chair,dining table,potted plant 
 
$ python image_search.py add example_images/image2.jpg 
Detected objects car,person,truck 
 
$ python image_search.py add example_images/image3.jpg 
Detected objects chair,person 
 
$ python image_search.py add example_images/image4.jpg 
Detected objects car 
 
$ python image_search.py add example_images/image5.jpg 
Detected objects car,person,traffic light 
 
$ python image_search.py add example_images/image6.jpg 
Detected objects chair,couch 
 
UC2: 
 
$ python image_search.py search --all car person 
example_images/image2.jpg: car,person,truck 
example_images/image5.jpg: car,person,traffic light 
2 matches found. 
 
$ python image_search.py search --some car person 
example_images/image2.jpg: car,person,truck 
example_images/image3.jpg: chair,person 
example_images/image4.jpg: car 
example_images/image5.jpg: car,person,traffic light 
4 matches found. 
 
UC3: 
 
$ python image_search.py similar --k 999 example_images/image3.jpg 
1.0000 example_images/image3.jpg 
0.5000 example_images/image6.jpg 
0.4082 example_images/image1.jpg 
0.4082 example_images/image2.jpg 
0.4082 example_images/image5.jpg 
0.0000 example_images/image4.jpg 
 
$ python image_search.py similar --k 3 example_images/image3.jpg 
1.0000 example_images/image3.jpg 
0.5000 example_images/image6.jpg 0.4082 example_images/image1.jpg 
 
$ python image_search.py similar example_images/image7.jpg 
0.5774 example_images/image1.jpg 
 
UC4: 
 
$ python image_search.py list 
example_images/image1.jpg: chair,dining table,potted plant 
example_images/image2.jpg: car,person,truck 
example_images/image3.jpg: chair,person 
example_images/image4.jpg: car 
example_images/image5.jpg: car,person,traffic light 
example_images/image6.jpg: chair,couch 
6 images found. 
 
Other requirements 
 
Input File Format 
 
The system shall be able to read and process images in JPEG format. 
 
For UC2, you can assume that all labels are entered in lowercase, and labels containing 
spaces are appropriately surrounded by quotes. 
 
Output Format 
 
The output of the system shall conform to the format of the example outputs given above. 
 
Unless indicated otherwise, the output of the system does not need to be sorted. 
 
For UC3, the output shall be sorted in descending order of similarity. That is, the most 
similar matching image and its similarity shall be listed first, followed by the next similar 
image, etc. 
 
For UC4, the output shall be sorted in ascending alphabetical order. 
 
Internal Storage 
 
You are free to choose either a file-based storage mechanism or an SQLite-based database 
for the implementation of the Index Access component. 
 
The index shall store the file path to the image, not the image data itself. 
 
Object detection 
 The supplied code for object detection can detect ~** object types. 
 
Future variations 
 
• Other object detection models (including external cloud-based systems) could be 
implemented. 
• Additional object types could be introduced. 
• Additional query types could be introduced. 
• Other similarity metrics could be implemented. 
• Other indexing technologies could be leveraged. 
• Other output formats (for the same information) could be introduced. 
 
These variations are not in scope for your implementation in this assignment, but your 
design must be able to accommodate these extensions largely without modifying the code 
that you have produced. 
 
Decomposition 
 
You must use the following component decomposition as the basis for your implementation 
design: 
 
The responsibilities of the elements are as follows: 
 
Elements Responsibilities 
Console App Front-end, interact with the user 
Image Search Manager Orchestrates the use case processes 
Object Detection Engine Detect objects in an image 
Matching Engine Finds matching images given the object types 
Index Access Stores and accesses the indexed images 
Image Access Read images from the file system 
 
You may introduce additional components in the architecture, provided that you justify why 
these additional components are required. 
 
 Scope & Constraints 
 
Your implementation must respect the boundaries defined by the decomposition and 
include classes for each of the elements in this decomposition. 
 
The implementation must: 
• run using Python 3.10 or higher, and 
• use only the Python 3.10 standard libraries and the packages listed in the 
requirements.txt files supplied with this case study, and 
• not rely on any platform-specific features, and 
• extend the supplied code, and 
• correctly implement the functions described in this document, and 
• it must function correctly with any given input files (you can assume that the entire 
content of the files fits into main memory), and 
• it must include a comprehensive unit test suite using pytest, and 
• adhere to the given decomposition and design principles taught in this course. 
 
Focus your attention on the quality of the code. 
 
It is not sufficient to merely create a functionally correct program to pass this assignment. 
The emphasis is on creating a well-structured, modular, object-oriented design that satisfies 
the design principles and coding practices discussed in this course. 
 
Implementation Notes 
 
You can use the code supplied in module object_detector.py to detect objects in 
images and to encode the tags associated with an image as a Boolean vector (which you will 
need to compute the cosine similarity). Do not modify this file. 
 
You can use the function matplotlib.image.imread to load the image data from a file, and 
sklearn.metrics.pairwise.cosine_similarity to compute the cosine similarity between two 
vectors representing lists of tags. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:DSCI 510代寫、代做Python編程語言
  • 下一篇:代寫FN6806、代做c/c++,Python程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲精品国产系列| 亚洲天堂av在线免费观看| 亚洲欧美激情视频| 国产视频精品免费播放| 夜夜狂射影院欧美极品| 久久www成人_看片免费不卡| 国产日韩欧美一区在线| 国产精品一二| 亚洲美女性视频| 欧美日韩在线播放一区| 国产欧美日韩麻豆91| 欧美天天视频| 99精品视频网| 老司机免费视频久久| 欧美不卡在线视频| 日韩视频免费在线观看| 欧美一区二区三区视频免费播放| aa成人免费视频| 欧美成人一区二免费视频软件| 在线观看日韩精品| 欧美成人免费网| 亚洲一区影院| 国产精品爱久久久久久久| 午夜在线精品偷拍| 国产有码在线一区二区视频| 国产亚洲欧美一区在线观看| 亚洲精品国产品国语在线app| 国产亚洲视频在线观看| 国产在线不卡视频| 久久久欧美一区二区| 国产伦精品一区二区三区在线观看| 亚洲欧美综合精品久久成人| 韩国一区二区三区美女美女秀| 国产亚洲一区精品| 久久av最新网址| 欧美一区激情| 国产精品自拍视频| 亚洲欧洲一区二区在线观看| 国产一在线精品一区在线观看| 久久久精品网| 亚洲精品午夜精品| 亚洲欧美日韩一区二区| 欧美午夜精品久久久久久浪潮| 亚洲欧美乱综合| 欧美日韩国产一级| 欧美性感一类影片在线播放| 日韩亚洲欧美一区| 欧美在线看片a免费观看| 亚洲国产精品成人综合色在线婷婷| 欲香欲色天天天综合和网| 午夜精品在线观看| 国产在线精品二区| 国产精品美女在线| 亚洲欧美激情视频在线观看一区二区三区| 国产色爱av资源综合区| 欧美久久久久久久久久| 亚洲激情小视频| 欧美午夜宅男影院| 亚洲欧美日韩在线不卡| 亚洲国产精品成人综合| 久久夜色精品一区| 亚洲国内高清视频| 久久av一区二区三区亚洲| 一区二区久久久久久| 国产欧美日韩在线播放| 欧美激情中文字幕乱码免费| 欧美精品一区二区三区蜜臀| 欧美视频在线视频| 国产精品美女视频网站| 久久一区中文字幕| 欧美在线高清| 一区二区精品在线观看| 欧美日韩高清在线观看| 91久久线看在观草草青青| 国产有码在线一区二区视频| 先锋影音久久久| 浪潮色综合久久天堂| 亚洲人成在线观看网站高清| 欧美区在线观看| 久久久成人精品| 海角社区69精品视频| 国产精品扒开腿做爽爽爽视频| 日韩视频亚洲视频| 国产主播一区二区三区| 欧美专区中文字幕| 激情综合色丁香一区二区| 午夜精品理论片| 亚洲一区二区精品视频| 国产亚洲成av人片在线观看桃| 亚洲激情社区| 久久久久九九视频| 国色天香一区二区| 欧美主播一区二区三区| 欧美福利小视频| 国产精品美女主播在线观看纯欲| 亚洲国产精品99久久久久久久久| 亚洲精品视频中文字幕| 日韩午夜精品| 亚洲影院免费观看| 亚洲免费在线视频| 亚洲国产日韩一区二区| 亚洲欧美日韩一区在线观看| 国产精品视频精品视频| 欧美国产亚洲视频| 美女被久久久| 亚洲午夜久久久| 久久久无码精品亚洲日韩按摩| 日韩午夜激情电影| 国产精品卡一卡二卡三| 欧美精品偷拍| 日韩午夜一区| 欧美一级专区免费大片| 午夜精品久久久久久久| 欧美老女人xx| 六月天综合网| 伊人精品成人久久综合软件| 久久免费少妇高潮久久精品99| 国产中文一区二区三区| 激情六月综合| 亚洲人体大胆视频| 欧美亚洲日本国产| 国产精品免费观看视频| 麻豆9191精品国产| 一区二区三区福利| 亚洲国产欧美一区二区三区同亚洲| 亚洲视频在线免费观看| 欧美v国产在线一区二区三区| 久久久久久久尹人综合网亚洲| 欧美福利视频在线观看| 亚洲黄色av| 亚洲一区中文| 欧美精品一区二区久久婷婷| 欧美日本不卡高清| 欧美理论视频| 免费看的黄色欧美网站| 午夜精品一区二区三区在线| 激情视频一区| 国产精品99久久久久久人| 在线观看日韩一区| 亚洲天堂成人在线观看| 欧美一区三区二区在线观看| 欧美日韩免费观看中文| 久久免费视频这里只有精品| 欧美激情久久久| 久久久噜噜噜久噜久久| 亚洲激情午夜| 国产无遮挡一区二区三区毛片日本| 亚洲一区二区三区成人在线视频精品| 在线激情影院一区| 欧美日韩性生活视频| 欧美一区二区三区免费观看视频| 免费不卡在线观看av| 久久精品毛片| 国产精品高清一区二区三区| 久久久久国产一区二区三区四区| 一区二区不卡在线视频 午夜欧美不卡在| 久久综合亚洲社区| 亚洲婷婷国产精品电影人久久| 久久国产日韩欧美| 欧美性片在线观看| 狠狠入ady亚洲精品| 国产色产综合色产在线视频| 美女黄毛**国产精品啪啪| 国产婷婷色一区二区三区在线|