日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS-UY 4563、Python程序語言代做
代寫CS-UY 4563、Python程序語言代做

時間:2024-12-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Final Project
CS-UY 4563 - Introduction to Machine Learning
Overview
• Partner with one student and select a machine learning problem of your choice.
• Apply the machine learning techniques you’ve learned during the course to
your chosen problem.
• Present your project to the class at the semester’s end.
Submission Requirements on Gradescope
Submit the following on Gradescope by the evening before the first presentation (exact
date to be announced):
• Presentation slides.
• Project write-up (PDF format).
• Project code as a Jupyter Notebook. If necessary, a GitHub link is acceptable.
• If using a custom dataset, upload it to Gradescope (or provide a GitHub link, if
necessary).
1Project Guidelines
Write-Up Requirements
Your project write-up should include the following:
1. Introduction: Describe your data set and the problem you aim to solve.
2. Perform some unsupervised analysis:
• Explore pattern or structure in the data using clustering and dimensionality (e.g
PCA).
• Visualize the training data
1
:
– Plot individual features to understand their distribution (e.g., histograms
or density plots).
– Plot individual features and their relationship with the target variable.
– Create a correlation matrix to analyze relationships between features.
• Discuss any interesting structure is present in the data. If you don’t find any
interesting structure, describe what you tried.
3. Supervised analysis: Train at least three distinct learning models
2 discussed in
the class (such as Linear Regression, Logistic Regression, SVM, Neural Networks,
CNN).
3
For implementation, you may:
• Use your own implementation from homework or developed independently.
• Use libraries such as Keras, scikit-learn, or TensorFlow.
For each model,
4 you must:
• Try different feature transformations. You should have at least three transformations.
 For example, try the polynomial, PCA, or radial-basis function kernel.
For neural networks, different architectures (e.g., neural networks with varying
numbers of layers) can also be considered forms of feature transformations, as
they learn complex representations of the input data.
• Use different regularization techniques. You should have at least 6 different
regularization values per model
1Do not look at the validation or test data.
2You can turn a regression task into a classification task by binning, or for the same dataset, select a
different feature as the target for your model. Or you can use SVR.
3
If you wish to use a model not discussed in class, you must discuss it with me first, or you will not
receive any points for that model.
4Even if you get a very high accuracy, perform these transformations to see what happens.
24. Table of Results:
• Provide a table with training accuracy and validation metrics for every model.
Include results for the different parameter settings (e.g., different regularization
values).
– For classification include metrics such as precision/recall.
– For regression modes, report metrics like MSE, R2
. For example, suppose
you’re using Ridge Regression and manipulating the value of λ. In that
case, your table should contain the training and validation accuracy for
every lambda value you used.
• Plot and analyze how performance metrics (like accuracy, precision, recall, MSE)
change with different feature transformations, hyperparameters (e.g.regularization
settings, learning rate).
5. Analytical Discussion:
• Analyze the experimental results and explain key findings. Provide a chart of
your key findings.
• Highlight the impact of feature transformations, regularization, and other hyperparameters
 on the model’s performance. Refer to the graphs provide in earlier
sections to support your analysis. Focus on interpreting:
– Whether the models overfit or underfit the data.
– How bias and variance affect performance, and which parameter choices
helped achieve better generalization.
Presentation Guidelines
• You and your partner will give a six-minute presentation to the class.
• Presentations will be held during the last 2 or 3 class periods and during the final
exam period for this class. You will be assigned a day for your presentation. If we
run out of time the day you are to present your project, you will present the next
day reserved for presentations.
• Attendance during all presentations is required. A part of your project grade
will be based on your attendance for everyone else’s presentation.
Important Notes on Academic Integrity
• Your submission will undergo plagiarism checks.
• If we suspect you of cheating, you will receive 0 for your final project grade. See the
syllabus for additional penalties that may be applied.
3Dataset Resources
Below are some resources where you can search for datasets. As a rough guideline, your
dataset should have at least 200 training examples and at least 10 features. You
are free to use these resources, look elsewhere, or create your own dataset.
• https://www.kaggle.com/competitions
• https://www.openml.org/
• https://paperswithcode.com/datasets
• https://registry.opendata.aws/
• https://dataportals.org/
• https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
• https://www.reddit.com/r/datasets/
• https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
Modifications
• If you have a project idea that doesn’t satisfy all the requirements mentioned above,
please inform me, and we can discuss its viability as your final project.
• If you use techniques not covered in class, you must demonstrate your understanding
of these ideas.
Brightspace Submissions Guidelines
• Dataset and Partner: Submit the link to your chosen dataset and your partner’s
name by October 30th.
• Final Submissions: Upload your presentation slides, project write-up, and code to
Gradescope by the evening before the first scheduled presentation. The exact date
will be announced once the total number of projects is confirmed. (I expect the due
date to be December 4th or December 9th.)
Potential Challenges and Resources
As you work with your dataset, you may encounter specific challenges that require additional
 techniques or tools. Below are some topics and resources that might be useful.
Please explore these topics further through online research.
4• Feature Reduction: Consider using PCA (which will be covered in class). PCA is
especially useful when working with SVMs, as they can be slow with high-dimensional
data.
If you choose to use SelectKBest from scikit-learn, you must understand why it works
before you use it.
• Creating Synthetic Examples: When using SMOTE or other methods to generate
synthetic data, ensure that only real data is used in the validation and test sets.
- If using synthetic data, make sure your validation set and test set mirrors the true
class proportions from the original dataset. A balanced test set for naturally unbalanced
 data can give misleading impressions of your model’s real-world performance.
For more details, see: Handling Imbalanced Classes
• Working with Time Series Data: For insights on working with time series data,
visit: NIST Handbook on Time Series
• Handling Missing Feature Values:
– See Lecture 16 at Stanford STATS 306B
– Techniques to Handle Missing Data Values
– How to Handle Missing Data in Python
– Statistical Imputation for Missing Data
• Multiclass Classification:
– Understanding Softmax in Multiclass Classification
– Precision and Recall for Multiclass Metrics
• Optimizers for Neural Networks: You may use Adam or other optimizers for
training neural networks.
• Centering Image Data with Bounding Boxes: If you are working with image
data, you are allowed to use bounding boxes to center the objects in your images. You
can use libraries like OpenCV (‘cv2’).
Tips
Don’t forget to scale your data as part of preprocessing. Be sure to document any modifications
 you made, including the scaling or normalization techniques you applied.
The following resource might be helpful. Please stick to topics we discussed in class or
those mentioned above: CS229: Practical Machine Learning Advice

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓萊特省旅游經濟好嗎(景點推薦)
  • 下一篇:ENG6編程代寫、代做MATLAB語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久精品女人的天堂av| 欧美福利电影网| 西西裸体人体做爰大胆久久久| 久久九九热re6这里有精品| 久热爱精品视频线路一| 国产亚洲一级高清| 国产婷婷一区二区| 欧美四级在线观看| 国产乱肥老妇国产一区二| 伊甸园精品99久久久久久| 性xx色xx综合久久久xx| 国产日产欧美a一级在线| 亚洲一区二区在线视频| 国产免费成人av| 日韩午夜av电影| 亚洲小视频在线| 久久国内精品视频| 亚洲美女黄色片| 久久精品久久99精品久久| 欧美精品一区二区在线播放| 伊人伊人伊人久久| 巨乳诱惑日韩免费av| 亚洲高清在线播放| 久久精品30| 国产精品成人一区二区艾草| 这里只有精品丝袜| 一区二区欧美亚洲| 亚洲免费久久| 久久久久久亚洲精品不卡4k岛国| 国内一区二区在线视频观看| 在线观看日韩av电影| 欧美在线播放视频| 伊人久久av导航| 久久精品视频一| 国产精品综合久久久| 亚洲色图制服丝袜| 国产精品白丝黑袜喷水久久久| 玖玖精品视频| 国产一区视频在线观看免费| 欧美一区二区三区喷汁尤物| 在线观看一区欧美| 午夜欧美电影在线观看| 欧美日韩国产综合一区二区| 久久久久国产一区二区三区四区| 国产在线精品二区| 国产精品一区在线观看| 亚洲欧美日韩国产综合在线| 国产精品久线观看视频| 日韩视频免费在线| 国产精品久久久一区二区三区| 亚洲欧美三级伦理| 欧美一区二区在线视频| 亚洲激情在线观看| 国内精品福利| 亚洲视频在线看| 久久国产天堂福利天堂| 国产日韩欧美中文| 久久久精品国产免大香伊| 久久欧美中文字幕| 欧美激情精品久久久久久久变态| 亚洲在线不卡| 欧美日韩一区三区四区| 在线中文字幕一区| 一区二区三区国产在线观看| 99精品欧美一区二区三区| 欧美在线视频观看免费网站| 国产揄拍国内精品对白| 亚洲尤物在线| 免费在线成人| 美女爽到呻吟久久久久| 国产精品久久久久一区二区三区共| 欧美成人午夜激情视频| 欧美三级日本三级少妇99| 亚洲欧美日产图| 老司机免费视频久久| 亚洲美女色禁图| 国产亚洲精品bv在线观看| 欧美亚洲尤物久久| 亚洲毛片一区| 狂野欧美激情性xxxx欧美| 欧美第一黄色网| 黄色工厂这里只有精品| 国产日韩欧美精品在线| 一区二区激情小说| 亚洲欧美国产日韩中文字幕| 亚洲高清视频在线观看| 国产精品日本欧美一区二区三区| 亚洲欧美欧美一区二区三区| 国产精品一区二区在线观看| 激情成人av在线| 欧美国产日韩视频| 你懂的成人av| 国产精品稀缺呦系列在线| 国产一区二区在线观看免费| 国产美女一区二区| 一本久久知道综合久久| 欧美日韩视频| 亚洲国产激情| 欧美日韩成人网| 国产精品久久午夜夜伦鲁鲁| 久久久99精品免费观看不卡| 欧美88av| 亚洲激情自拍| 欧美中文字幕视频在线观看| 一区免费观看视频| 欧美在线观看视频| 亚洲精品极品| 在线播放日韩专区| 午夜久久福利| 亚洲一区二区三区午夜| 亚洲女人av| 午夜日本精品| 国产区在线观看成人精品| 在线播放亚洲一区| 亚洲人成绝费网站色www| 国产精品一区视频| 国产精品久久福利| 好吊色欧美一区二区三区视频| 欧美激情一区二区三级高清视频| 亚洲人成网站777色婷婷| 欧美色123| 欧美69视频| 精品不卡视频| 国产精品午夜视频| 尤物九九久久国产精品的特点| 怡红院av一区二区三区| 1769国产精品| 欧美视频中文字幕| 欧美乱人伦中文字幕在线| 国产精品免费区二区三区观看| 久久精品免费观看| 国产香蕉久久精品综合网| 免费不卡在线观看av| 欧美自拍丝袜亚洲| **性色生活片久久毛片| 欧美+日本+国产+在线a∨观看| 欧美一区二区播放| 99www免费人成精品| 9l视频自拍蝌蚪9l视频成人| 欧美不卡视频一区发布| 欧美一级专区免费大片| 羞羞漫画18久久大片| 欧美午夜精彩| 亚洲国产婷婷香蕉久久久久久| 中文在线资源观看网站视频免费不卡| 亚洲国产精品成人久久综合一区| 欧美亚洲色图校园春色| 亚洲精品免费在线| 亚洲国产清纯| 性做久久久久久免费观看欧美| 欧美成人精品三级在线观看| 亚洲国产成人精品久久久国产成人一区| 狠狠狠色丁香婷婷综合激情| 欧美三级免费| 欧美一区深夜视频| 久久丁香综合五月国产三级网站| 先锋影音久久久| 久久午夜色播影院免费高清| 国产精品99久久99久久久二8| 欧美猛交免费看| 1024成人| 亚洲亚洲精品三区日韩精品在线视频| 中文在线资源观看网站视频免费不卡| 久久久久久久久岛国免费|