日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS-UY 4563、Python程序語言代做
代寫CS-UY 4563、Python程序語言代做

時間:2024-12-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Final Project
CS-UY 4563 - Introduction to Machine Learning
Overview
• Partner with one student and select a machine learning problem of your choice.
• Apply the machine learning techniques you’ve learned during the course to
your chosen problem.
• Present your project to the class at the semester’s end.
Submission Requirements on Gradescope
Submit the following on Gradescope by the evening before the first presentation (exact
date to be announced):
• Presentation slides.
• Project write-up (PDF format).
• Project code as a Jupyter Notebook. If necessary, a GitHub link is acceptable.
• If using a custom dataset, upload it to Gradescope (or provide a GitHub link, if
necessary).
1Project Guidelines
Write-Up Requirements
Your project write-up should include the following:
1. Introduction: Describe your data set and the problem you aim to solve.
2. Perform some unsupervised analysis:
• Explore pattern or structure in the data using clustering and dimensionality (e.g
PCA).
• Visualize the training data
1
:
– Plot individual features to understand their distribution (e.g., histograms
or density plots).
– Plot individual features and their relationship with the target variable.
– Create a correlation matrix to analyze relationships between features.
• Discuss any interesting structure is present in the data. If you don’t find any
interesting structure, describe what you tried.
3. Supervised analysis: Train at least three distinct learning models
2 discussed in
the class (such as Linear Regression, Logistic Regression, SVM, Neural Networks,
CNN).
3
For implementation, you may:
• Use your own implementation from homework or developed independently.
• Use libraries such as Keras, scikit-learn, or TensorFlow.
For each model,
4 you must:
• Try different feature transformations. You should have at least three transformations.
 For example, try the polynomial, PCA, or radial-basis function kernel.
For neural networks, different architectures (e.g., neural networks with varying
numbers of layers) can also be considered forms of feature transformations, as
they learn complex representations of the input data.
• Use different regularization techniques. You should have at least 6 different
regularization values per model
1Do not look at the validation or test data.
2You can turn a regression task into a classification task by binning, or for the same dataset, select a
different feature as the target for your model. Or you can use SVR.
3
If you wish to use a model not discussed in class, you must discuss it with me first, or you will not
receive any points for that model.
4Even if you get a very high accuracy, perform these transformations to see what happens.
24. Table of Results:
• Provide a table with training accuracy and validation metrics for every model.
Include results for the different parameter settings (e.g., different regularization
values).
– For classification include metrics such as precision/recall.
– For regression modes, report metrics like MSE, R2
. For example, suppose
you’re using Ridge Regression and manipulating the value of λ. In that
case, your table should contain the training and validation accuracy for
every lambda value you used.
• Plot and analyze how performance metrics (like accuracy, precision, recall, MSE)
change with different feature transformations, hyperparameters (e.g.regularization
settings, learning rate).
5. Analytical Discussion:
• Analyze the experimental results and explain key findings. Provide a chart of
your key findings.
• Highlight the impact of feature transformations, regularization, and other hyperparameters
 on the model’s performance. Refer to the graphs provide in earlier
sections to support your analysis. Focus on interpreting:
– Whether the models overfit or underfit the data.
– How bias and variance affect performance, and which parameter choices
helped achieve better generalization.
Presentation Guidelines
• You and your partner will give a six-minute presentation to the class.
• Presentations will be held during the last 2 or 3 class periods and during the final
exam period for this class. You will be assigned a day for your presentation. If we
run out of time the day you are to present your project, you will present the next
day reserved for presentations.
• Attendance during all presentations is required. A part of your project grade
will be based on your attendance for everyone else’s presentation.
Important Notes on Academic Integrity
• Your submission will undergo plagiarism checks.
• If we suspect you of cheating, you will receive 0 for your final project grade. See the
syllabus for additional penalties that may be applied.
3Dataset Resources
Below are some resources where you can search for datasets. As a rough guideline, your
dataset should have at least 200 training examples and at least 10 features. You
are free to use these resources, look elsewhere, or create your own dataset.
• https://www.kaggle.com/competitions
• https://www.openml.org/
• https://paperswithcode.com/datasets
• https://registry.opendata.aws/
• https://dataportals.org/
• https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
• https://www.reddit.com/r/datasets/
• https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
Modifications
• If you have a project idea that doesn’t satisfy all the requirements mentioned above,
please inform me, and we can discuss its viability as your final project.
• If you use techniques not covered in class, you must demonstrate your understanding
of these ideas.
Brightspace Submissions Guidelines
• Dataset and Partner: Submit the link to your chosen dataset and your partner’s
name by October 30th.
• Final Submissions: Upload your presentation slides, project write-up, and code to
Gradescope by the evening before the first scheduled presentation. The exact date
will be announced once the total number of projects is confirmed. (I expect the due
date to be December 4th or December 9th.)
Potential Challenges and Resources
As you work with your dataset, you may encounter specific challenges that require additional
 techniques or tools. Below are some topics and resources that might be useful.
Please explore these topics further through online research.
4• Feature Reduction: Consider using PCA (which will be covered in class). PCA is
especially useful when working with SVMs, as they can be slow with high-dimensional
data.
If you choose to use SelectKBest from scikit-learn, you must understand why it works
before you use it.
• Creating Synthetic Examples: When using SMOTE or other methods to generate
synthetic data, ensure that only real data is used in the validation and test sets.
- If using synthetic data, make sure your validation set and test set mirrors the true
class proportions from the original dataset. A balanced test set for naturally unbalanced
 data can give misleading impressions of your model’s real-world performance.
For more details, see: Handling Imbalanced Classes
• Working with Time Series Data: For insights on working with time series data,
visit: NIST Handbook on Time Series
• Handling Missing Feature Values:
– See Lecture 16 at Stanford STATS 306B
– Techniques to Handle Missing Data Values
– How to Handle Missing Data in Python
– Statistical Imputation for Missing Data
• Multiclass Classification:
– Understanding Softmax in Multiclass Classification
– Precision and Recall for Multiclass Metrics
• Optimizers for Neural Networks: You may use Adam or other optimizers for
training neural networks.
• Centering Image Data with Bounding Boxes: If you are working with image
data, you are allowed to use bounding boxes to center the objects in your images. You
can use libraries like OpenCV (‘cv2’).
Tips
Don’t forget to scale your data as part of preprocessing. Be sure to document any modifications
 you made, including the scaling or normalization techniques you applied.
The following resource might be helpful. Please stick to topics we discussed in class or
those mentioned above: CS229: Practical Machine Learning Advice

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓萊特省旅游經濟好嗎(景點推薦)
  • 下一篇:ENG6編程代寫、代做MATLAB語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    釘釘簽到打卡位置修改神器,2026怎么修改定位在范圍內
    釘釘簽到打卡位置修改神器,2026怎么修改定
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
  • 短信驗證碼 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产在线精品一区二区夜色| 亚洲欧美卡通另类91av| 国产精品久线观看视频| 欧美黄色小视频| 国内精品美女av在线播放| 欧美日韩综合久久| 亚洲国产精品视频| 国产毛片久久| 日韩视频久久| 国产精品每日更新| 欧美午夜电影一区| 欧美成人一区二区三区片免费| 亚洲专区在线视频| 欧美一级夜夜爽| 亚洲综合大片69999| 香蕉成人久久| 亚洲精品欧美在线| 久久婷婷麻豆| 久久成人亚洲| 亚洲国产经典视频| 欧美性色综合| 欧美日韩国产三级| 亚洲精品视频二区| 亚洲小说欧美另类婷婷| 欧美 亚欧 日韩视频在线| 洋洋av久久久久久久一区| 一区二区三区四区五区在线| 亚洲视频在线免费观看| 亚洲天堂成人| 欧美视频一区| 欧美一区二区在线观看| 欧美日韩国产色综合一二三四| 午夜精彩视频在线观看不卡| 翔田千里一区二区| 欧美日韩裸体免费视频| 久久久久一本一区二区青青蜜月| 亚洲午夜精品久久久久久浪潮| 亚洲高清不卡一区| 国产嫩草影院久久久久| 国产专区欧美专区| 久久久噜噜噜久久狠狠50岁| 国产亚洲视频在线| 美女日韩在线中文字幕| 亚洲精品免费一区二区三区| 久久综合九色综合欧美就去吻| 久久久久久久综合日本| 国产欧美精品一区二区色综合| 欧美亚洲成人免费| 亚洲精品国产精品国自产在线| 亚洲品质自拍| 亚洲一区二区三区国产| 国产色产综合产在线视频| 亚洲成色777777女色窝| 欧美性色综合| 久久精品亚洲一区| 国产精品家教| 亚洲日韩中文字幕在线播放| 欧美激情va永久在线播放| 国产综合第一页| 黄色资源网久久资源365| 久久精品视频在线播放| 欧美一区二区播放| 欧美一级理论片| 国内精品久久国产| 欧美视频在线观看免费| 亚洲直播在线一区| 欧美a级理论片| 久久久久久91香蕉国产| 久久久国产精彩视频美女艺术照福利| 亚洲一区二区三区影院| 你懂的国产精品| 精品999在线播放| 蜜臀91精品一区二区三区| 欧美jizzhd精品欧美巨大免费| 国产精品国产三级国产专播品爱网| 免费国产一区二区| 欧美性感一类影片在线播放| 性做久久久久久久久| 黄色亚洲精品| 99国产成+人+综合+亚洲欧美| 99国产精品视频免费观看一公开| 欧美制服丝袜| 久久久久综合网| 国产揄拍国内精品对白| 亚洲欧美一区二区三区久久| 午夜在线不卡| 久久久久久夜| 国产精品久久中文| 一区二区黄色| 久久激情一区| 久久综合九色欧美综合狠狠| 欧美福利视频在线观看| 欧美激情精品久久久久| 国产在线成人| 久久精品一区二区三区中文字幕| 欧美一区二区免费| 久久精品伊人| 亚洲国产裸拍裸体视频在线观看乱了中文| 亚洲一区在线观看免费观看电影高清| 国产一二精品视频| 久久全国免费视频| 国内精品久久久久影院色| 亚洲免费电影在线| 欧美主播一区二区三区美女 久久精品人| 一区二区三区欧美日韩| 美女福利精品视频| 国产日韩精品一区二区浪潮av| 欧美aⅴ一区二区三区视频| 亚洲理论电影网| 欧美国产专区| 亚欧美中日韩视频| 久久琪琪电影院| 亚洲精品久久嫩草网站秘色| 欧美午夜精品久久久久久久| 久久久精品国产免费观看同学| 蜜臀av性久久久久蜜臀aⅴ| 模特精品裸拍一区| 一区二区三区四区蜜桃| 国产亚洲一本大道中文在线| 亚洲午夜电影网| 午夜视频在线观看一区| 在线看国产日韩| 欧美金8天国| 欧美在线观看你懂的| 国产精品资源在线观看| 国产精品入口日韩视频大尺度| 亚洲精品久久嫩草网站秘色| 亚洲精品综合精品自拍| 午夜精彩国产免费不卡不顿大片| 美女网站久久| 这里只有精品在线播放| 久久亚洲欧美国产精品乐播| 国产精品理论片在线观看| 老牛影视一区二区三区| 亚洲精品乱码久久久久久日本蜜臀| 玖玖国产精品视频| 中日韩视频在线观看| 欧美黄色片免费观看| 亚洲国产成人精品女人久久久| 激情小说另类小说亚洲欧美| 国产精品午夜春色av| 国产永久精品大片wwwapp| 亚洲国产清纯| 99视频有精品| 久久久女女女女999久久| 狠狠88综合久久久久综合网| 亚洲理论在线观看| 欧美日韩成人一区| 欧美在线黄色| 国产精品区一区| 男女精品网站| 91久久精品日日躁夜夜躁国产| 欧美手机在线| 欧美一区=区| 久久久亚洲国产美女国产盗摄| 欧美一区二区三区日韩视频| 欧美成人精品福利| 亚洲精品1234| 国产精品久久久久一区| 国产欧美视频一区二区三区| 小嫩嫩精品导航| 国产精品久久久久久亚洲调教| 国产精品毛片高清在线完整版| 老司机精品久久|