日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS-UY 4563、Python程序語言代做
代寫CS-UY 4563、Python程序語言代做

時間:2024-12-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Final Project
CS-UY 4563 - Introduction to Machine Learning
Overview
• Partner with one student and select a machine learning problem of your choice.
• Apply the machine learning techniques you’ve learned during the course to
your chosen problem.
• Present your project to the class at the semester’s end.
Submission Requirements on Gradescope
Submit the following on Gradescope by the evening before the first presentation (exact
date to be announced):
• Presentation slides.
• Project write-up (PDF format).
• Project code as a Jupyter Notebook. If necessary, a GitHub link is acceptable.
• If using a custom dataset, upload it to Gradescope (or provide a GitHub link, if
necessary).
1Project Guidelines
Write-Up Requirements
Your project write-up should include the following:
1. Introduction: Describe your data set and the problem you aim to solve.
2. Perform some unsupervised analysis:
• Explore pattern or structure in the data using clustering and dimensionality (e.g
PCA).
• Visualize the training data
1
:
– Plot individual features to understand their distribution (e.g., histograms
or density plots).
– Plot individual features and their relationship with the target variable.
– Create a correlation matrix to analyze relationships between features.
• Discuss any interesting structure is present in the data. If you don’t find any
interesting structure, describe what you tried.
3. Supervised analysis: Train at least three distinct learning models
2 discussed in
the class (such as Linear Regression, Logistic Regression, SVM, Neural Networks,
CNN).
3
For implementation, you may:
• Use your own implementation from homework or developed independently.
• Use libraries such as Keras, scikit-learn, or TensorFlow.
For each model,
4 you must:
• Try different feature transformations. You should have at least three transformations.
 For example, try the polynomial, PCA, or radial-basis function kernel.
For neural networks, different architectures (e.g., neural networks with varying
numbers of layers) can also be considered forms of feature transformations, as
they learn complex representations of the input data.
• Use different regularization techniques. You should have at least 6 different
regularization values per model
1Do not look at the validation or test data.
2You can turn a regression task into a classification task by binning, or for the same dataset, select a
different feature as the target for your model. Or you can use SVR.
3
If you wish to use a model not discussed in class, you must discuss it with me first, or you will not
receive any points for that model.
4Even if you get a very high accuracy, perform these transformations to see what happens.
24. Table of Results:
• Provide a table with training accuracy and validation metrics for every model.
Include results for the different parameter settings (e.g., different regularization
values).
– For classification include metrics such as precision/recall.
– For regression modes, report metrics like MSE, R2
. For example, suppose
you’re using Ridge Regression and manipulating the value of λ. In that
case, your table should contain the training and validation accuracy for
every lambda value you used.
• Plot and analyze how performance metrics (like accuracy, precision, recall, MSE)
change with different feature transformations, hyperparameters (e.g.regularization
settings, learning rate).
5. Analytical Discussion:
• Analyze the experimental results and explain key findings. Provide a chart of
your key findings.
• Highlight the impact of feature transformations, regularization, and other hyperparameters
 on the model’s performance. Refer to the graphs provide in earlier
sections to support your analysis. Focus on interpreting:
– Whether the models overfit or underfit the data.
– How bias and variance affect performance, and which parameter choices
helped achieve better generalization.
Presentation Guidelines
• You and your partner will give a six-minute presentation to the class.
• Presentations will be held during the last 2 or 3 class periods and during the final
exam period for this class. You will be assigned a day for your presentation. If we
run out of time the day you are to present your project, you will present the next
day reserved for presentations.
• Attendance during all presentations is required. A part of your project grade
will be based on your attendance for everyone else’s presentation.
Important Notes on Academic Integrity
• Your submission will undergo plagiarism checks.
• If we suspect you of cheating, you will receive 0 for your final project grade. See the
syllabus for additional penalties that may be applied.
3Dataset Resources
Below are some resources where you can search for datasets. As a rough guideline, your
dataset should have at least 200 training examples and at least 10 features. You
are free to use these resources, look elsewhere, or create your own dataset.
• https://www.kaggle.com/competitions
• https://www.openml.org/
• https://paperswithcode.com/datasets
• https://registry.opendata.aws/
• https://dataportals.org/
• https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
• https://www.reddit.com/r/datasets/
• https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
Modifications
• If you have a project idea that doesn’t satisfy all the requirements mentioned above,
please inform me, and we can discuss its viability as your final project.
• If you use techniques not covered in class, you must demonstrate your understanding
of these ideas.
Brightspace Submissions Guidelines
• Dataset and Partner: Submit the link to your chosen dataset and your partner’s
name by October 30th.
• Final Submissions: Upload your presentation slides, project write-up, and code to
Gradescope by the evening before the first scheduled presentation. The exact date
will be announced once the total number of projects is confirmed. (I expect the due
date to be December 4th or December 9th.)
Potential Challenges and Resources
As you work with your dataset, you may encounter specific challenges that require additional
 techniques or tools. Below are some topics and resources that might be useful.
Please explore these topics further through online research.
4• Feature Reduction: Consider using PCA (which will be covered in class). PCA is
especially useful when working with SVMs, as they can be slow with high-dimensional
data.
If you choose to use SelectKBest from scikit-learn, you must understand why it works
before you use it.
• Creating Synthetic Examples: When using SMOTE or other methods to generate
synthetic data, ensure that only real data is used in the validation and test sets.
- If using synthetic data, make sure your validation set and test set mirrors the true
class proportions from the original dataset. A balanced test set for naturally unbalanced
 data can give misleading impressions of your model’s real-world performance.
For more details, see: Handling Imbalanced Classes
• Working with Time Series Data: For insights on working with time series data,
visit: NIST Handbook on Time Series
• Handling Missing Feature Values:
– See Lecture 16 at Stanford STATS 306B
– Techniques to Handle Missing Data Values
– How to Handle Missing Data in Python
– Statistical Imputation for Missing Data
• Multiclass Classification:
– Understanding Softmax in Multiclass Classification
– Precision and Recall for Multiclass Metrics
• Optimizers for Neural Networks: You may use Adam or other optimizers for
training neural networks.
• Centering Image Data with Bounding Boxes: If you are working with image
data, you are allowed to use bounding boxes to center the objects in your images. You
can use libraries like OpenCV (‘cv2’).
Tips
Don’t forget to scale your data as part of preprocessing. Be sure to document any modifications
 you made, including the scaling or normalization techniques you applied.
The following resource might be helpful. Please stick to topics we discussed in class or
those mentioned above: CS229: Practical Machine Learning Advice

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓萊特省旅游經濟好嗎(景點推薦)
  • 下一篇:ENG6編程代寫、代做MATLAB語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        一区二区三区回区在观看免费视频| 欧美一级免费视频| 亚洲视频1区| 久久爱91午夜羞羞| 免费亚洲电影在线| 久久久久看片| 亚洲国产精品一区二区尤物区| 夜夜夜久久久| 国产日韩欧美在线观看| 国产女主播在线一区二区| 亚洲高清电影| 夜夜嗨网站十八久久| 麻豆九一精品爱看视频在线观看免费| 免费视频一区二区三区在线观看| 精品成人一区二区| 欧美色播在线播放| 亚洲欧美日韩中文视频| 欧美成人精品在线播放| 欧美激情综合五月色丁香| 日韩亚洲视频| 久久精品99无色码中文字幕| 一区二区三区色| 国产女优一区| 最新日韩精品| 欧美日韩国产首页| 欧美激情视频在线播放| 欧美日韩一级黄| 欧美日韩三级视频| 欧美在线欧美在线| 欧美色精品天天在线观看视频| 蜜桃av一区二区在线观看| 欧美日本一区二区三区| 国产精品一级| 亚洲一区在线观看免费观看电影高清| 欧美承认网站| 亚洲欧美经典视频| 国产精品二区在线观看| 欧美破处大片在线视频| 狠狠色噜噜狠狠色综合久| 亚洲午夜av| 欧美日韩国产色综合一二三四| 亚洲国产精品va在线观看黑人| 日韩特黄影片| 欧美粗暴jizz性欧美20| 国产精品丝袜91| 欧美丰满高潮xxxx喷水动漫| 欧美在线视频播放| 久久精品91久久香蕉加勒比| 亚洲人成在线播放| 裸体素人女欧美日韩| 久久亚洲综合色一区二区三区| 欧美成人嫩草网站| 黑人中文字幕一区二区三区| 一区二区免费在线观看| 久久一日本道色综合久久| 亚洲精品国久久99热| 亚洲一区二区三区乱码aⅴ| 亚洲国产另类 国产精品国产免费| 亚洲美女精品一区| 久久亚洲欧美国产精品乐播| 亚洲欧美影音先锋| 亚洲国产日韩欧美一区二区三区| 亚洲专区一二三| 国产精品日日做人人爱| 嫩草国产精品入口| 久久成人这里只有精品| 美女黄网久久| 亚洲一区二区综合| 欧美成人乱码一区二区三区| 国产一区二区三区久久久| 午夜在线精品偷拍| 久久精品2019中文字幕| 欧美视频在线视频| 永久免费视频成人| 日韩一级欧洲| 欧美天天综合网| 国产精品不卡在线| 免费观看成人鲁鲁鲁鲁鲁视频| 一本色道久久综合亚洲精品婷婷| 欧美日韩亚洲系列| 久久综合影视| 亚洲另类在线一区| 亚洲韩日在线| 一区二区在线观看视频在线观看| 亚洲成色777777在线观看影院| 欧美精品成人| 女主播福利一区| 亚洲第一视频| 国产精品一区二区欧美| 亚洲综合电影一区二区三区| 久久成人综合视频| 欧美中文在线观看国产| 国产日韩在线一区二区三区| 国产精品久久久久9999吃药| 国产色综合网| 狠狠色狠狠色综合日日tαg| 亚洲精品一区二区三区在线观看| 久久人人97超碰精品888| 欧美精品七区| 激情五月综合色婷婷一区二区| 国内精品久久久久久久果冻传媒| 玖玖在线精品| 亚洲一区二区精品| 日韩视频在线观看一区二区| 久热精品视频在线观看一区| 亚洲精品日韩在线观看| 亚洲电影免费在线| 亚洲伦理精品| 欧美aa在线视频| 久久国产精品久久久久久电车| 欧美日韩成人一区二区| 一区二区日本视频| 国内成人精品2018免费看| 国产精品久久综合| 久久中文在线| 欧美午夜一区二区三区免费大片| 欧美日韩午夜精品| 亚洲韩国青草视频| 欧美激情第10页| 亚洲素人在线| 久久先锋资源| 在线观看日韩av先锋影音电影院| 欧美成人精品| 亚洲国产高清一区二区三区| 欧美精品一区二区视频| 欧美视频在线观看视频极品| 亚洲精品欧美极品| 亚洲欧洲免费视频| 国产精品久久久久久久电影| 黄色成人在线网址| 国产欧美一区二区三区久久| 亚洲高清免费| 国产亚洲a∨片在线观看| 亚洲欧美另类综合偷拍| 欧美伊久线香蕉线新在线| 欧美大香线蕉线伊人久久国产精品| 在线观看91精品国产入口| 中文精品视频一区二区在线观看| 国产一区二区日韩精品欧美精品| 久久免费黄色| 久久裸体艺术| 一本一本大道香蕉久在线精品| 欧美精品成人一区二区在线观看| 欧美在线一二三四区| 国产欧美日韩综合一区在线播放| 一区二区精品在线观看| 欧美一区二区成人| 一本色道久久88综合日韩精品| 亚洲电影免费观看高清完整版| 久久久一本精品99久久精品66| 欧美日韩岛国| 久久久亚洲国产天美传媒修理工| 亚洲高清视频中文字幕| 国产伦精品一区二区三区高清版| 激情婷婷亚洲| 亚洲一区国产一区| 亚洲小视频在线| 亚洲精品国产精品乱码不99按摩| 国产欧美日韩| 国产精品久久久久久超碰| 欧美在线观看一区二区| 国产精品男gay被猛男狂揉视频| 亚洲精品久久久久久久久久久久久| 在线精品高清中文字幕|