日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS 417編程、代做Python程序語言
代寫CS 417編程、代做Python程序語言

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 417/517: Introduction to Human Computer Interaction -
Project 1 ( Fall 2024 )
1 Introduction
In this assignment, your task is to implement a Convolutional Neural Network (CNN) and evaluate
its performance in classifying handwritten digits. After completing this assignment, you are able to
understand:
• How Neural Network works? How to implement Neural Network?
• How to setup a Machine Learning experiment on public data?
• How regularization, dropout plays a role in machine learning implementation?
• How to ffne-tune a well-train model?
To get started with the exercise, you will need to download the supporting ffles and unzip its
contents to the directory you want to complete this assignment.
2 Dataset
The MNIST dataset consists of a training set of 60000 examples and a test set of 10000 examples.
All digits have been size-normalized and centered in a ffxed image of 28 × 28 size. In the original
dataset, each pixel in the image is represented by an integer between 0 and 255, where 0 is black,
255 is white and anything between represents a different shade of gray. In many research papers, the
offfcial training set of 60000 examples is divided into an actual training set of 50000 examples and a
validation set of 10000 examples.
3 Implementation
( Notice : You can use any library to ffnish this project. We recommend students to use Google
Colab, which is a cloud-based service that allows you to run Jupyter Notebooks for free. To start
1this, follow these steps. 1. Open your web browser and go to the Google Colab website by visiting
colab.research.google.com. 2. Sign up and Sign in. 3. After signing in, you can start a new notebook
by clicking on File - New notebook. )
3.1 Tasks
Code Task [70 Points]: Implement Convolution Neural networks (CNN) to train and test the
MNIST or FER-2013 dataset, and save the well-train model.
Code Task (1) Build your customized Convolution Neural Network (CNN)
• Deffne the architecture of a Convolution Neural Network (CNN) with more than 3 layers, that
takes these images as input and gives as output what the handwritten digits represent for this
image.
• Test your machine learning model on the testing set: After ffnishing the architecture of CNN
models, ffx your hyper-parameters(learning rate, lambda for penalty, number of layers, and
number of neurons per layer), and test your model’s performance on the testing set.
• Implement different optimizer (i.e., at least two). Compare the results in report and analyze the
potential reasons.
• Implement different regularization methods for the Neural Networks, such as Dropout, l1 or l2.
Compare the results in report and analyze the potential reasons.
Code Task (2) Fine-tune at least three different well-pretrained models (e.g., MobileNetV3,
Resnet50 ) to get a good performance. You need to choose the speciffc layers to retrained and write
it in the report.
Code Task (3): This code task is only for CS517. Recognize handwritten digits from a
recorded video using the pre-trained model and OpenCV libraries.
Notice: The students in CS417 will get 20 points bonus if they ffnish this part.
Load the video and read frames.
Load the pre-trained model.
While the input is available, read the next frame.
Process the frame. (options: resizing, cropping, blurring, converting to
grayscale, binarizing, normalizing and etc.)
Input the processed frame into the model.
Use a threshold to detect digits.
Put a contour around the digit and label the predicted value and probability.
Display the frame.
Release resources.
Hint: Here lists some of the functions you might use.
cv2.VideoCapture
cv2.resize
cv2.cvtColor
2cv2.threshold
cv2.putText
cv2.rectangle
cv2.imshow
cv2.waitKey
cv2.destroyAllWindows
Writing Report Task [30 Points]: Write a report to describe above implementation details and
corresponding results.
4 Deliverables
There are two deliverables: report and code.
1. Report (30 points) The report should be delivered as a separate pdf ffle, and it is recommended
for you to use the NIPS template to structure your report. You may include comments in the
Jupyter Notebook, however you will need to duplicate the results in the report. The report
should describe your results, experimental setup, details and comparison between the results
obtained from different setting of the algorithm and dataset.
2. Code (70 points)
The code for your implementation should be in Python only. The name of the Main ffle should
be main.ipynb. Please provide necessary comments in the code and show some essential steps
for your group work.
3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機打開當前頁
  • 上一篇:代做COMP 412、代寫python設計編程
  • 下一篇:CVEN9612代寫、代做Java/Python程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久夜色精品国产噜噜av| 亚洲精品影院| 午夜视频在线观看一区二区| 午夜亚洲福利在线老司机| 美日韩在线观看| 欧美国产精品劲爆| 亚洲国产高清一区二区三区| 欧美精品一区二区三区蜜桃| 国产伦理一区| 久久成人一区| 久久电影一区| 亚洲欧美综合国产精品一区| 欧美日韩精品免费观看视一区二区| 国产噜噜噜噜噜久久久久久久久| 欧美.com| 亚洲国产日韩一区| 欧美国产先锋| 欧美日韩伦理在线免费| 亚洲片在线观看| 国产欧美综合在线| 亚洲卡通欧美制服中文| 中文一区二区在线观看| 国产亚洲精品综合一区91| 亚洲欧美激情在线视频| 影音先锋在线一区| 欧美日韩在线不卡一区| 在线看成人片| 国产日韩欧美在线一区| 一本色道久久综合狠狠躁篇的优点| ●精品国产综合乱码久久久久| 国产精品婷婷午夜在线观看| 亚洲久久一区| 欧美日韩免费观看中文| 欧美精品123区| 亚洲午夜精品在线| 欧美精品福利| 蜜桃久久精品乱码一区二区| 国产日韩一区二区三区在线播放| 亚洲精品123区| 一本久久知道综合久久| 亚洲性视频网站| 欧美午夜精品久久久久久超碰| 久久午夜羞羞影院免费观看| 午夜久久资源| 国产精品成人aaaaa网站| 国产手机视频一区二区| 亚洲精品一区二区三区不| 久久久久国产精品午夜一区| 免费亚洲电影| 欧美另类69精品久久久久9999| 亚洲资源在线观看| 国产精品成av人在线视午夜片| 欧美护士18xxxxhd| 亚洲成人自拍视频| 在线观看国产日韩| 亚洲一区三区视频在线观看| 国产精品久久久久久久久久直播| 欧美福利专区| 韩国一区二区三区美女美女秀| 黄色国产精品| 欧美国产一区视频在线观看| 1000部国产精品成人观看| 亚洲黄色成人久久久| 亚洲影院在线观看| 国产一区二区中文| 亚洲高清久久| 午夜在线电影亚洲一区| 免费亚洲一区| 在线视频亚洲| 国产九色精品成人porny| 99pao成人国产永久免费视频| 亚洲国产cao| 午夜亚洲视频| 亚洲精品之草原avav久久| 欧美日本一区二区三区| 欧美国产激情二区三区| 欧美日韩免费精品| 狠狠色伊人亚洲综合网站色| 亚洲一区三区视频在线观看| 国产精品午夜国产小视频| 欧美日韩四区| 欧美一区永久视频免费观看| 国产精品区免费视频| 国产日产亚洲精品| 久久免费视频网站| 国产视频自拍一区| 91久久久一线二线三线品牌| 欧美精品亚洲二区| 欧美在线日韩在线| 欧美一区二区观看视频| 亚洲一区不卡| 性做久久久久久久久| 欧美一区国产二区| 亚洲香蕉成视频在线观看| 欧美国产在线视频| 国产亚洲va综合人人澡精品| 亚洲欧美日韩精品久久久久| 欧美日韩国产成人高清视频| 日韩午夜激情av| 另类欧美日韩国产在线| 国产精品国产三级国产普通话三级| 欧美三级资源在线| 国模精品一区二区三区色天香| 美女图片一区二区| 久久精品视频在线免费观看| 亚洲美女在线观看| 久久久久国产精品一区| 亚洲一区精品视频| 欧美日韩视频不卡| 欧美午夜一区二区三区免费大片| 亚洲国产裸拍裸体视频在线观看乱了| 亚洲男人的天堂在线aⅴ视频| 91久久精品www人人做人人爽| 日韩一级黄色av| 国产亚洲精品aa午夜观看| 欧美日韩成人综合天天影院| 亚洲在线免费观看| 久久久噜噜噜久噜久久| 国产视频一区二区在线观看| 国产精品视频最多的网站| 韩国免费一区| 欧美一区二区高清在线观看| 永久久久久久| 一区二区三区视频观看| 国产毛片精品国产一区二区三区| 亚洲美洲欧洲综合国产一区| 久久精品日韩欧美| 老司机aⅴ在线精品导航| 黄色亚洲精品| 久久国产精品99久久久久久老狼| 亚洲影院色在线观看免费| 欧美色123| 欧美aⅴ一区二区三区视频| 久久久综合香蕉尹人综合网| 美女国内精品自产拍在线播放| 最新69国产成人精品视频免费| 欧美日韩在线播放三区四区| 欧美大学生性色视频| 欧美一区二区视频在线观看| 欧美自拍偷拍午夜视频| 久久精品欧洲| 亚洲视频成人| 中日韩高清电影网| 欧美专区中文字幕| 国产视频欧美视频| 一区二区成人精品| 91久久精品久久国产性色也91| 黄色日韩网站| 浪潮色综合久久天堂| 欧美诱惑福利视频| 亚洲欧美日韩在线观看a三区| 国产无一区二区| 在线国产精品一区| 久久综合一区二区三区| 久久久久这里只有精品| 亚洲欧美一区二区视频| 亚洲网友自拍| 日韩网站在线看片你懂的| 欧美日韩xxxxx| 亚洲国产另类久久久精品极度| 男女精品视频| 久久久爽爽爽美女图片| 久久精品2019中文字幕| 欧美精品一区二区三区四区|