日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS 417編程、代做Python程序語言
代寫CS 417編程、代做Python程序語言

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 417/517: Introduction to Human Computer Interaction -
Project 1 ( Fall 2024 )
1 Introduction
In this assignment, your task is to implement a Convolutional Neural Network (CNN) and evaluate
its performance in classifying handwritten digits. After completing this assignment, you are able to
understand:
• How Neural Network works? How to implement Neural Network?
• How to setup a Machine Learning experiment on public data?
• How regularization, dropout plays a role in machine learning implementation?
• How to ffne-tune a well-train model?
To get started with the exercise, you will need to download the supporting ffles and unzip its
contents to the directory you want to complete this assignment.
2 Dataset
The MNIST dataset consists of a training set of 60000 examples and a test set of 10000 examples.
All digits have been size-normalized and centered in a ffxed image of 28 × 28 size. In the original
dataset, each pixel in the image is represented by an integer between 0 and 255, where 0 is black,
255 is white and anything between represents a different shade of gray. In many research papers, the
offfcial training set of 60000 examples is divided into an actual training set of 50000 examples and a
validation set of 10000 examples.
3 Implementation
( Notice : You can use any library to ffnish this project. We recommend students to use Google
Colab, which is a cloud-based service that allows you to run Jupyter Notebooks for free. To start
1this, follow these steps. 1. Open your web browser and go to the Google Colab website by visiting
colab.research.google.com. 2. Sign up and Sign in. 3. After signing in, you can start a new notebook
by clicking on File - New notebook. )
3.1 Tasks
Code Task [70 Points]: Implement Convolution Neural networks (CNN) to train and test the
MNIST or FER-2013 dataset, and save the well-train model.
Code Task (1) Build your customized Convolution Neural Network (CNN)
• Deffne the architecture of a Convolution Neural Network (CNN) with more than 3 layers, that
takes these images as input and gives as output what the handwritten digits represent for this
image.
• Test your machine learning model on the testing set: After ffnishing the architecture of CNN
models, ffx your hyper-parameters(learning rate, lambda for penalty, number of layers, and
number of neurons per layer), and test your model’s performance on the testing set.
• Implement different optimizer (i.e., at least two). Compare the results in report and analyze the
potential reasons.
• Implement different regularization methods for the Neural Networks, such as Dropout, l1 or l2.
Compare the results in report and analyze the potential reasons.
Code Task (2) Fine-tune at least three different well-pretrained models (e.g., MobileNetV3,
Resnet50 ) to get a good performance. You need to choose the speciffc layers to retrained and write
it in the report.
Code Task (3): This code task is only for CS517. Recognize handwritten digits from a
recorded video using the pre-trained model and OpenCV libraries.
Notice: The students in CS417 will get 20 points bonus if they ffnish this part.
Load the video and read frames.
Load the pre-trained model.
While the input is available, read the next frame.
Process the frame. (options: resizing, cropping, blurring, converting to
grayscale, binarizing, normalizing and etc.)
Input the processed frame into the model.
Use a threshold to detect digits.
Put a contour around the digit and label the predicted value and probability.
Display the frame.
Release resources.
Hint: Here lists some of the functions you might use.
cv2.VideoCapture
cv2.resize
cv2.cvtColor
2cv2.threshold
cv2.putText
cv2.rectangle
cv2.imshow
cv2.waitKey
cv2.destroyAllWindows
Writing Report Task [30 Points]: Write a report to describe above implementation details and
corresponding results.
4 Deliverables
There are two deliverables: report and code.
1. Report (30 points) The report should be delivered as a separate pdf ffle, and it is recommended
for you to use the NIPS template to structure your report. You may include comments in the
Jupyter Notebook, however you will need to duplicate the results in the report. The report
should describe your results, experimental setup, details and comparison between the results
obtained from different setting of the algorithm and dataset.
2. Code (70 points)
The code for your implementation should be in Python only. The name of the Main ffle should
be main.ipynb. Please provide necessary comments in the code and show some essential steps
for your group work.
3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機打開當前頁
  • 上一篇:代做COMP 412、代寫python設計編程
  • 下一篇:CVEN9612代寫、代做Java/Python程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        日韩天堂在线观看| 欧美激情一区二区久久久| 国产亚洲va综合人人澡精品| 1000精品久久久久久久久| 欧美精品一区二区久久婷婷| 久久免费99精品久久久久久| 一本久道久久综合狠狠爱| 亚洲欧美一区二区三区久久| 亚洲精品欧美专区| 精品成人免费| 欧美国产专区| 一区二区三区我不卡| 亚洲午夜三级在线| 欧美国产国产综合| 亚洲国产成人在线| 欧美不卡在线| 欧美aⅴ99久久黑人专区| 欧美性大战久久久久久久| 久久久亚洲欧洲日产国码αv| 亚洲国产婷婷综合在线精品| 欧美中文字幕在线播放| 一区二区三区国产| 亚洲精品网址在线观看| 亚洲欧美日韩直播| 亚洲女同在线| 亚洲一区二区影院| 99亚洲伊人久久精品影院红桃| 久久精品2019中文字幕| 欧美精品一卡| 99精品欧美一区二区三区综合在线| 欧美视频三区在线播放| 99精品国产在热久久| 欧美mv日韩mv亚洲| 免费成人性网站| 欧美深夜福利| 欧美国产日本韩| 国产欧美精品日韩| 欧美91福利在线观看| 久久精品国产成人| 欧美精彩视频一区二区三区| 91久久精品www人人做人人爽| 国产精品久久久99| 欧美精品 日韩| 欧美日韩综合精品| 欧美日韩国内| 亚洲精品视频在线看| 国内揄拍国内精品少妇国语| 国内精品**久久毛片app| 国产精品久久久免费| 小黄鸭精品密入口导航| 亚洲理伦电影| 国产一区二区高清视频| 亚洲免费人成在线视频观看| 久久精品91久久久久久再现| 欧美成人自拍视频| 一本大道久久a久久精二百| 国产精品女人久久久久久| 99精品视频一区| 久久久久国产精品人| 亚洲网站视频| 国产精品毛片一区二区三区| 欧美福利视频网站| 欧美午夜电影网| 亚洲黄色尤物视频| 欧美一区二区三区在线| 国产精品人人做人人爽| 亚洲电影免费观看高清完整版在线观看| 欧美一区二区三区喷汁尤物| 久久青草欧美一区二区三区| 国产亚洲精品久久飘花| 亚洲女性喷水在线观看一区| 久久精品男女| 国产精品久久久久久久午夜片| 国产精品hd| 亚洲国产精品小视频| 久久久久高清| 国产精品一区二区在线观看| 亚洲精选一区二区| 久久精品国产99精品国产亚洲性色| 尤物99国产成人精品视频| 亚洲免费av网站| 欧美天堂亚洲电影院在线播放| 日韩一级在线| 黄色一区二区三区| 韩国福利一区| 小处雏高清一区二区三区| 欧美一区视频| 欧美精品一区二区三区四区| 久久综合色天天久久综合图片| 国产精品日韩精品| 欧美精品一区二区三| 国产综合自拍| 亚洲国产天堂久久国产91| 国产精品视频精品视频| 免费观看国产成人| 国产欧美日韩麻豆91| 国产九九精品视频| 亚洲图片欧洲图片av| 亚洲欧美在线一区二区| 久久精品国产一区二区电影| 欧美一区二区视频在线观看2020| 欧美激情精品久久久久| 国外成人在线视频网站| 亚洲在线播放电影| 国产精品高潮呻吟视频| 亚洲精品视频免费在线观看| 久久成人一区二区| 亚洲美女av网站| 国产精品欧美一区喷水| 久久成人国产| 国产精品久久久久久久久免费| 亚洲女女女同性video| 欧美一区二区三区的| 欧美96在线丨欧| 国产网站欧美日韩免费精品在线观看| 国产精品a久久久久久| 国产日韩精品一区二区| 欧美人成免费网站| 亚洲茄子视频| 亚洲第一搞黄网站| 欧美日韩视频在线一区二区| 国产亚洲欧美aaaa| 亚洲女与黑人做爰| 亚洲精品乱码久久久久| 亚洲精品欧美一区二区三区| 国产日韩成人精品| 国产日韩精品视频一区| 尤物网精品视频| 欧美揉bbbbb揉bbbbb| 国产一区二区三区自拍| 嫩草国产精品入口| 亚洲经典在线看| 国产综合激情| 国产精品一区免费观看| 午夜视频久久久| 欧美理论大片| 国产精品久久久久天堂| 欧美一区二视频| 依依成人综合视频| 亚洲调教视频在线观看| 欧美视频日韩| 亚洲美女精品成人在线视频| 久久精品国产视频| 久久久噜久噜久久综合| 日韩性生活视频| 91久久久国产精品| 欧美一二三视频| av72成人在线| 久久激情中文| 亚洲欧洲另类国产综合| 亚洲激情影视| 国产精品视频成人| 久久人人爽人人爽| 免费欧美在线视频| 在线视频亚洲一区| 一本色道久久加勒比88综合| 欧美黄色小视频| 久久全球大尺度高清视频| 国产欧美日韩亚洲一区二区三区| 在线观看国产日韩| 欧美成人a∨高清免费观看| 久久精品一区四区| 欧美韩日一区二区| 中文在线资源观看网站视频免费不卡|