日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CIS5200、代做Java/Python程序語言
代寫CIS5200、代做Java/Python程序語言

時間:2024-11-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CIS5200: Machine Learning Fall 2024
Homework 2
Release Date: October 9, 2024 Due Date: October 18, 2024
• HW2 will count for 10% of the grade. This grade will be split between the written (30 points)
and programming (40 points) parts.
• All written homework solutions are required to be formatted using LATEX. Please use the
template here. Do not modify the template. This is a good resource to get yourself more
familiar with LATEX, if you are still not comfortable.
• You will submit your solution for the written part of HW2 as a single PDF file via Gradescope.
The deadline is 11:59 PM ET. Contact TAs on Ed if you face any issues uploading your
homeworks.
• Collaboration is permitted and encouraged for this homework, though each student must
understand, write, and hand in their own submission. In particular, it is acceptable for
students to discuss problems with each other; it is not acceptable for students to look at
another student’s written Solutions when writing their own. It is also not acceptable to
publicly post your (partial) solution on Ed, but you are encouraged to ask public questions
on Ed. If you choose to collaborate, you must indicate on each homework with whom you
collaborated.
Please refer to the notes and slides posted on the website if you need to recall the material discussed
in the lectures.
1 Written Questions (30 points)
Problem 1: Gradient Descent (20 points)
Consider a training dataset S = {(x1, y1), . . . ,(xm, ym)} where for all i ∈ [m], ∥xi∥2 ≤ 1 and
yi ∈ {−1, 1}. Suppose we want to run regularized logistic regression, that is, solve the following
optimization problem: for regularization term R(w),
min
w m
1
mX
i=1
log  1 + exp  −yiw
⊤xi
 + R(w)
Recall: For showing that a twice differentiable function f is µ-strongly convex, it suffices to show
that the hessian satisfies: ∇2f ⪰ µI. Similarly to show hat a twice differentiable function f is
L-smooth, it suffices to show that the hessian satisfies: LI ⪰ ∇2f. Here I is the identity matrix of
the appropriate dimension.
1
1.1 (3 points) In the case where R(w) = 0, we know that the objective is convex. Is it strongly
convex? Explain your answer.
1.2 (3 points) In the case where R(w) = 0, show that the objective is **smooth.
1.3 (4 points) In the case of R(w) = 0, what is the largest learning rate that you can choose such
that the objective is non-increasing at each iteration? Explain your answer.
Hint: The answer is not 1/L for a L-smooth function.
1.4 (1 point) What is the convergence rate of gradient descent on this problem with R(w) = 0?
In other words, suppose I want to achieve F(wT +1) − F(w∗) ≤ ϵ, express the number of iterations
T that I need to run GD for.
Note: You do not need to reprove the convergence guarantee, just use the guarantee to provide the
rate.
1.5 (5 points) Consider the following variation of the ℓ2 norm regularizer called the weighted ℓ2
norm regularizer: for λ1, . . . , λd ≥ 0,
Show that the objective with R(w) as defined above is µ-strongly convex and L-smooth for µ =
2 minj∈[d] λj and L = 1 + 2 maxj∈[d] λj .
1.6 (4 points) If a function is µ-strongly convex and L-smooth, after T iterations of gradient
descent we have:
Using the above, what is the convergence rate of gradient descent on the regularized logistic re gression problem with the weighted ℓ2 norm penalty? In other words, suppose I want to achieve
∥wT +1 − w∗∥2 ≤ ϵ, express the number of iterations T that I need to run GD.
Note: You do not need to prove the given convergence guarantee, just provide the rate.
Problem 2: MLE for Linear Regression (10 points)
In this question, you are going to derive an alternative justification for linear regression via the
squared loss. In particular, we will show that linear regression via minimizing the squared loss is
equivalent to maximum likelihood estimation (MLE) in the following statistical model.
Assume that for given x, there exists a true linear function parameterized by w so that the label y
is generated randomly as
y = w
⊤x + ϵ
2
where ϵ ∼ N (0, σ2
) is some normally distributed noise with mean 0 and variance σ
2 > 0. In other
words, the labels of your data are equal to some true linear function, plus Gaussian noise around
that line.
2.1 (3 points) Show that the above model implies that the conditional density of y given x is
P p(y|x) = 1.
Hint: Use the density function of the normal distribution, or the fact that adding a constant to a
Gaussian random variable shifts the mean by that constant.
2.2 (2 points) Show that the risk of the predictor f(x) = E[y|x] is σ.
2.3 (3 points) The likelihood for the given data {(x1, y1), . . . ,(xm, ym)} is given by.
Lˆ(w, σ) = p(y1, . . . , ym|x1, . . . , xm) =
Compute the log conditional likelihood, that is, log Lˆ(w, σ).
Hint: Use your expression for p(y | x) from part 2.1.
2.4 (2 points) Show that the maximizer of log Lˆ(w, σ) is the same as the minimizer of the empirical
risk with squared loss, ˆR(w) = m
Hint: Take the derivative of your result from 2.3 and set it equal to zero.
2 Programming Questions (20 points)
Use the link here to access the Google Colaboratory (Colab) file for this homework. Be sure to
make a copy by going to “File”, and “Save a copy in Drive”. As with the previous homeworks, this
assignment uses the PennGrader system for students to receive immediate feedback. As noted on
the notebook, please be sure to change the student ID from the default ‘99999999’ to your 8-digit
PennID.
Instructions for how to submit the programming component of HW 2 to Gradescope are included
in the Colab notebook. You may find this PyTorch linear algebra reference and this general
PyTorch reference to be helpful in perusing the documentation and finding useful functions for
your implementation.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫MMME4056、代做MATLAB編程設計
  • 下一篇:CSCI 201代做、代寫c/c++,Python編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久国产高清| 国产日产欧美精品| 久久噜噜噜精品国产亚洲综合| 久久久久久久久久久久久女国产乱| 在线观看一区二区精品视频| 国产精品影片在线观看| 欧美aa在线视频| 欧美激情综合| 欧美特黄a级高清免费大片a级| 久久久久久久久久久一区| 国内视频精品| 久久久久久亚洲精品不卡4k岛国| 亚洲综合色丁香婷婷六月图片| 欧美在线观看一区二区三区| 国产麻豆日韩| 国产精品日韩专区| 欧美在线999| 国产日韩精品在线| 亚洲成人中文| 久久一日本道色综合久久| 久久婷婷国产综合精品青草| 国产一区白浆| 亚洲永久免费观看| 免费精品视频| 国产在线不卡精品| 在线观看欧美激情| 欧美日韩激情网| 在线观看三级视频欧美| 欧美/亚洲一区| 久久综合伊人77777尤物| 亚洲国产另类 国产精品国产免费| 久久久青草青青国产亚洲免观| 久久久久91| 91久久久精品| 国产一区欧美| 欧美精品一区二区三区蜜桃| 欧美国产视频一区二区| 亚洲欧洲另类国产综合| 午夜精品福利电影| 亚洲免费在线观看视频| 国产日韩欧美在线看| 欧美三级电影一区| 欧美日韩高清一区| 国产精品国产自产拍高清av| 欧美jizzhd精品欧美巨大免费| 欧美精品日韩一本| 精品91视频| 蜜臀91精品一区二区三区| 国产日韩亚洲欧美精品| 国产精品永久免费在线| 亚洲成在线观看| 中文欧美字幕免费| 国产精品二区二区三区| 日韩一区二区免费看| 欧美日韩人人澡狠狠躁视频| 欧美激情视频一区二区三区在线播放| 欧美一区二区三区另类| 欧美性事在线| 欧美日韩性生活视频| 久久成人18免费网站| 国产日韩欧美综合精品| 亚洲精品国产精品乱码不99按摩| 国产午夜精品视频免费不卡69堂| 国内精品视频在线观看| 国产亚洲一级高清| 麻豆精品精华液| 亚洲精品一区二区三区在线观看| 亚洲美女视频在线免费观看| 在线观看亚洲视频| 欧美日韩另类综合| 国产精品99久久99久久久二8| 欧美精品久久久久久久久久| 欧美三级资源在线| 这里只有精品电影| 韩日欧美一区二区三区| 亚洲国产精品t66y| 国产精品日韩一区| 好吊成人免视频| 久久国产一二区| 亚洲人成亚洲人成在线观看图片| 红桃视频亚洲| 亚洲欧美在线高清| 亚洲欧美另类在线| 一区二区日韩伦理片| 伊人春色精品| 国产色综合久久| 国产综合久久久久久| 日韩午夜激情av| 午夜精品一区二区三区电影天堂| 免费试看一区| 欧美激情偷拍| 欧美精品三级在线观看| 精品粉嫩aⅴ一区二区三区四区| 欧美成人综合| 国产日韩欧美一区二区三区在线观看| 国内精品久久久久影院优| 国产在线不卡视频| 国产一区二区高清视频| 欧美午夜电影一区| 久久免费99精品久久久久久| 国产亚洲精品美女| 国产日韩视频| 欧美日韩黄视频| 欧美理论视频| 欧美视频日韩视频在线观看| 欧美日本精品在线| 欧美激情综合色综合啪啪| 欧美大片在线影院| 国产视频在线观看一区二区三区| 欧美国产激情二区三区| 最新高清无码专区| 国产精品亚洲人在线观看| 欧美一区二粉嫩精品国产一线天| 久久久噜噜噜久久狠狠50岁| 黄色精品一区二区| 老鸭窝亚洲一区二区三区| 欧美日韩 国产精品| 狂野欧美激情性xxxx欧美| 欧美日韩国产综合视频在线观看| 一区二区三区视频在线播放| 亚洲国产精品久久久久婷婷老年| 久久精品中文字幕免费mv| 裸体歌舞表演一区二区| 亚洲午夜电影| 欧美日韩aaaaa| 久久久久久网址| 性色一区二区| 亚洲色无码播放| 亚洲一区二区三区777| 欧美性猛交xxxx免费看久久久| 亚洲欧美国产视频| 国产主播在线一区| 国产精品成人一区| 国产精品99久久久久久宅男| 先锋影音网一区二区| 国产精品萝li| 国产精品久久久久aaaa九色| 欧美国产日韩在线| 久久精品国产一区二区三区| 久久久国产午夜精品| 欧美精品在线播放| 亚洲欧美偷拍卡通变态| 国产精品日韩一区| 国产精品黄视频| 久久精品91久久香蕉加勒比| 欧美日韩高清免费| 欧美一区日本一区韩国一区| 亚洲永久免费| 日韩一级大片在线| 久久噜噜噜精品国产亚洲综合| 在线日韩中文字幕| 狠狠色丁香久久婷婷综合_中| 欧美激情精品久久久久久大尺度| 欧美大片免费| 欧美日韩精品一区二区天天拍小说| 亚洲高清在线视频| 亚洲欧美视频在线观看视频| 久久久夜色精品亚洲| 国产亚洲午夜高清国产拍精品| 狠久久av成人天堂| 狠狠色狠狠色综合日日tαg| 日韩午夜电影在线观看| 欧美本精品男人aⅴ天堂| 国产精品高潮在线|