日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CIS5200、代做Java/Python程序語言
代寫CIS5200、代做Java/Python程序語言

時間:2024-11-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CIS5200: Machine Learning Fall 2024
Homework 2
Release Date: October 9, 2024 Due Date: October 18, 2024
• HW2 will count for 10% of the grade. This grade will be split between the written (30 points)
and programming (40 points) parts.
• All written homework solutions are required to be formatted using LATEX. Please use the
template here. Do not modify the template. This is a good resource to get yourself more
familiar with LATEX, if you are still not comfortable.
• You will submit your solution for the written part of HW2 as a single PDF file via Gradescope.
The deadline is 11:59 PM ET. Contact TAs on Ed if you face any issues uploading your
homeworks.
• Collaboration is permitted and encouraged for this homework, though each student must
understand, write, and hand in their own submission. In particular, it is acceptable for
students to discuss problems with each other; it is not acceptable for students to look at
another student’s written Solutions when writing their own. It is also not acceptable to
publicly post your (partial) solution on Ed, but you are encouraged to ask public questions
on Ed. If you choose to collaborate, you must indicate on each homework with whom you
collaborated.
Please refer to the notes and slides posted on the website if you need to recall the material discussed
in the lectures.
1 Written Questions (30 points)
Problem 1: Gradient Descent (20 points)
Consider a training dataset S = {(x1, y1), . . . ,(xm, ym)} where for all i ∈ [m], ∥xi∥2 ≤ 1 and
yi ∈ {−1, 1}. Suppose we want to run regularized logistic regression, that is, solve the following
optimization problem: for regularization term R(w),
min
w m
1
mX
i=1
log  1 + exp  −yiw
⊤xi
 + R(w)
Recall: For showing that a twice differentiable function f is µ-strongly convex, it suffices to show
that the hessian satisfies: ∇2f ⪰ µI. Similarly to show hat a twice differentiable function f is
L-smooth, it suffices to show that the hessian satisfies: LI ⪰ ∇2f. Here I is the identity matrix of
the appropriate dimension.
1
1.1 (3 points) In the case where R(w) = 0, we know that the objective is convex. Is it strongly
convex? Explain your answer.
1.2 (3 points) In the case where R(w) = 0, show that the objective is **smooth.
1.3 (4 points) In the case of R(w) = 0, what is the largest learning rate that you can choose such
that the objective is non-increasing at each iteration? Explain your answer.
Hint: The answer is not 1/L for a L-smooth function.
1.4 (1 point) What is the convergence rate of gradient descent on this problem with R(w) = 0?
In other words, suppose I want to achieve F(wT +1) − F(w∗) ≤ ϵ, express the number of iterations
T that I need to run GD for.
Note: You do not need to reprove the convergence guarantee, just use the guarantee to provide the
rate.
1.5 (5 points) Consider the following variation of the ℓ2 norm regularizer called the weighted ℓ2
norm regularizer: for λ1, . . . , λd ≥ 0,
Show that the objective with R(w) as defined above is µ-strongly convex and L-smooth for µ =
2 minj∈[d] λj and L = 1 + 2 maxj∈[d] λj .
1.6 (4 points) If a function is µ-strongly convex and L-smooth, after T iterations of gradient
descent we have:
Using the above, what is the convergence rate of gradient descent on the regularized logistic re gression problem with the weighted ℓ2 norm penalty? In other words, suppose I want to achieve
∥wT +1 − w∗∥2 ≤ ϵ, express the number of iterations T that I need to run GD.
Note: You do not need to prove the given convergence guarantee, just provide the rate.
Problem 2: MLE for Linear Regression (10 points)
In this question, you are going to derive an alternative justification for linear regression via the
squared loss. In particular, we will show that linear regression via minimizing the squared loss is
equivalent to maximum likelihood estimation (MLE) in the following statistical model.
Assume that for given x, there exists a true linear function parameterized by w so that the label y
is generated randomly as
y = w
⊤x + ϵ
2
where ϵ ∼ N (0, σ2
) is some normally distributed noise with mean 0 and variance σ
2 > 0. In other
words, the labels of your data are equal to some true linear function, plus Gaussian noise around
that line.
2.1 (3 points) Show that the above model implies that the conditional density of y given x is
P p(y|x) = 1.
Hint: Use the density function of the normal distribution, or the fact that adding a constant to a
Gaussian random variable shifts the mean by that constant.
2.2 (2 points) Show that the risk of the predictor f(x) = E[y|x] is σ.
2.3 (3 points) The likelihood for the given data {(x1, y1), . . . ,(xm, ym)} is given by.
Lˆ(w, σ) = p(y1, . . . , ym|x1, . . . , xm) =
Compute the log conditional likelihood, that is, log Lˆ(w, σ).
Hint: Use your expression for p(y | x) from part 2.1.
2.4 (2 points) Show that the maximizer of log Lˆ(w, σ) is the same as the minimizer of the empirical
risk with squared loss, ˆR(w) = m
Hint: Take the derivative of your result from 2.3 and set it equal to zero.
2 Programming Questions (20 points)
Use the link here to access the Google Colaboratory (Colab) file for this homework. Be sure to
make a copy by going to “File”, and “Save a copy in Drive”. As with the previous homeworks, this
assignment uses the PennGrader system for students to receive immediate feedback. As noted on
the notebook, please be sure to change the student ID from the default ‘99999999’ to your 8-digit
PennID.
Instructions for how to submit the programming component of HW 2 to Gradescope are included
in the Colab notebook. You may find this PyTorch linear algebra reference and this general
PyTorch reference to be helpful in perusing the documentation and finding useful functions for
your implementation.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫MMME4056、代做MATLAB編程設計
  • 下一篇:CSCI 201代做、代寫c/c++,Python編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美精品在线观看播放| 亚洲欧美乱综合| 国产精品久久久久久久久久久久| 在线观看欧美成人| 欧美日韩在线播放| 欧美成人亚洲成人日韩成人| 国产精品yjizz| 日韩视频在线观看国产| 欧美.日韩.国产.一区.二区| 亚洲狠狠丁香婷婷综合久久久| 久久九九全国免费精品观看| 一本色道久久加勒比精品| 亚洲国产99精品国自产| 猛男gaygay欧美视频| 最新国产成人在线观看| 国产手机视频一区二区| 宅男噜噜噜66国产日韩在线观看| 久久久久国产精品一区| 中文一区字幕| 国产乱码精品一区二区三区忘忧草| 久久精品成人一区二区三区蜜臀| 欧美不卡三区| 亚洲摸下面视频| 亚洲午夜在线| 国产精品v一区二区三区| 久久精品国产清高在天天线| 亚洲欧美www| 亚洲精品久久7777| 亚洲国产精品成人综合色在线婷婷| 亚洲黄色视屏| 欧美一区激情视频在线观看| 精品999网站| 欧美人与禽性xxxxx杂性| 亚洲国产精品国自产拍av秋霞| 国产精品一区二区三区观看| 午夜精品久久久久| 欧美一级成年大片在线观看| 国产亚洲欧美色| 国产综合久久久久久| 国产精品v一区二区三区| 午夜视黄欧洲亚洲| 精品88久久久久88久久久| 另类国产ts人妖高潮视频| 久久综合亚洲社区| 久久综合一区二区三区| 影音先锋日韩有码| 国产一区二区精品久久| 国产欧美日韩综合一区在线观看| 欧美电影免费观看高清完整版| 国产精品v亚洲精品v日韩精品| av不卡免费看| 国产伦精品一区二区三区照片91| 欧美日韩国产成人在线观看| 亚洲国产天堂久久国产91| 亚洲精品精选| 一本一道久久综合狠狠老精东影业| 久久综合狠狠综合久久综合88| 欧美成人精品一区| 亚洲人成久久| 亚洲日本在线视频观看| 一区二区日本视频| 欧美日韩精品一区视频| 国产精品高潮在线| 国产一区二区精品久久99| 亚洲国产精品欧美一二99| 久久精品国产96久久久香蕉| 久久综合久久综合这里只有精品| 国产欧美日韩一区二区三区在线观看| 免费一区二区三区| 亚洲精品视频啊美女在线直播| 欧美日韩性视频在线| 亚洲一区日本| 销魂美女一区二区三区视频在线| 国产精品v欧美精品v日本精品动漫| 欧美激情一区| 久久久www成人免费毛片麻豆| 亚洲小视频在线观看| 亚洲欧洲一区二区三区在线观看| 在线成人激情黄色| 日韩视频一区二区三区| 开心色5月久久精品| 欧美午夜无遮挡| 国语对白精品一区二区| 亚洲一区在线播放| 欧美一区深夜视频| 亚洲免费人成在线视频观看| 久久久免费精品| 国产精品久久久久久户外露出| 一本久久知道综合久久| 国产精品综合视频| 欧美激情久久久久久| 精品51国产黑色丝袜高跟鞋| 免费久久99精品国产| 欧美视频一区在线| 欧美国产日本韩| 欧美三区在线观看| 伊人狠狠色丁香综合尤物| 亚洲欧美精品suv| 国产精品视频自拍| 中文在线不卡视频| 久久人人爽人人爽| 亚洲视频在线观看一区| 欧美岛国在线观看| 欧美激情视频在线播放| 欧美成人激情视频免费观看| 欧美精品电影在线| 欧美日韩视频在线观看一区二区三区| 欧美三级不卡| 国产精品国产三级国产| 亚洲精品久久久蜜桃| 欧美日本一区二区高清播放视频| 在线国产亚洲欧美| 国产自产在线视频一区| 亚洲精品免费在线播放| 亚洲夫妻自拍| 雨宫琴音一区二区在线| 在线日韩av永久免费观看| 欧美成人高清| 亚洲天堂第二页| 日韩网站在线看片你懂的| 欧美大片va欧美在线播放| 在线观看欧美亚洲| 欧美剧在线免费观看网站| 久久久久国产成人精品亚洲午夜| 欧美88av| 99成人精品| 欧美激情精品久久久久久| 日韩视频专区| 影音先锋日韩精品| 国产主播一区二区三区四区| 亚洲国产高清一区二区三区| 欧美视频在线观看一区| 亚洲一区二区视频在线观看| 欧美亚洲不卡| 亚洲精品一线二线三线无人区| 久久av一区二区三区漫画| 久久精品国产99国产精品澳门| 欧美另类综合| 国产欧美日韩三级| 亚洲一区美女视频在线观看免费| 在线视频欧美精品| 亚洲欧洲一区二区三区| 影音先锋一区| 国产欧美日韩精品a在线观看| 国内精品视频在线播放| aa级大片欧美| 久久久久久电影| 欧美精品亚洲一区二区在线播放| 最近中文字幕日韩精品| 国产亚洲精品一区二区| 国产精品亚洲人在线观看| 国产一区二区高清不卡| 国产深夜精品福利| 亚洲日本中文| 亚洲久久在线| 久久久91精品国产一区二区三区| 国产一区高清视频| 欧美日韩一区视频| 久久精品视频va| 老司机午夜精品| 亚洲精品少妇30p| 国产精品国产三级国产aⅴ无密码| 国产一区美女| 亚洲一区二区三区免费在线观看|