日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做MATH2110、代寫c/c++,Python程序
代做MATH2110、代寫c/c++,Python程序

時間:2025-03-16  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
SPRING SEMESTER SEMESTER 2025
MATH2110 - STATISTICS 3
Coursework 1
Deadline: 3pm, Friday 14/3/2025
Your neat, clearly-legible solutions should be submitted electronically as a Jupyter or PDF file via the MATH2110
Moodle page by the deadline indicated there. As this work is assessed, your submission must be entirely your
own work (see the University’s policy on Academic Misconduct).
Submissions up to five working days late will be subject to a penalty of 5% of the maximum mark per working
day.
Deadline extensions due to Support Plans and Extenuating Circumstances can be requested according to
School and University policies, as applicable to this module. Because of these policies, solutions (where
appropriate) and feedback cannot normally be released earlier than 10 working days after the main cohort
submission deadline.
Please post any academic queries in the corresponding Moodle forum, so that everyone receives the same
assistance. As it’s assessed work, I will only be able to answer points of clarification.
The work is intended to be approximately equal to a week’s worth of study time on the module for a student
who has worked through the module content as intended - including the R aspects. If you have any issues
relating to your own personal circumstances, then please email me.
THE DATA
The objective is to build a predictive model for the median house price in Boston neighbourhoods using various
neighbourhood characteristics. Median house price is a crucial indicator for urban planning and economic
studies. It is important to understand how different social indicators affect it. To this end, the dataset we will
analyse here contains detailed records of 506 neighbourhoods, capturing factors such as crime rates, age of
the properties, etc.
The training and test data are provided in the files BostonTrain.csv and BostonTest.csv available at the Moodle
page. The train file contains observations for 404 neighbourhoods. The target variable is medv, median value
of houses in thousands of dollars. The predictors include:
• crim, which contains the per capita crime rate by town.
• zn, which contains the proportion of residential land.
• rm, which contains the average number of rooms per house.
• age, which contains the proportion of houses built before 1940.
• dis, which contains distances to large employment centres.
MATH2110 Turn Over
2 MATH2110
• ptratio, which contains the student-teacher ratio by town.
• lstat, which contains the percentage of lower-status population.
The test data is provided in the file BostonTest.csv, containing observations for 102 neighbourhoods. The
test data should only be used to evaluate the predictive performance of your models.
THE TASKS
(a) (80 marks) Using only the training data (BostonTrain.csv), develop one or more models to predict the
median house price (medv) based on the predictor variables. You may use any methods covered in this
module. For this part, the test data must not be used. Your analysis should include:
– Model selection and justification.
– Diagnostics to assess the quality of your model(s).
– Interpretation of the model parameters. Which parameters seem to have a greater importance for
prediction?
(b) (20 marks) Use your “best” model(s) from (a) to predict the median house price (medv) for the neighbourhoods
in the test dataset (BostonTest.csv). Provide appropriate numerical summaries and plots to evaluate the
quality of your predictions. Compare your predictions to those of a simple linear model of the form:
medv ∼ crim.
NOTES
• An approximate breakdown of marks for part (a) is: exploratory analysis (20 marks), model selection
(40 marks), model checking and discussion (20 marks). About half the marks for each are for doing
technically correct and relevant things, and half for discussion and interpretation of the output. However,
this is only a guide, and the work does not have to be rigidly set out in this manner. There is some natural
overlap between these parts, and overall level of presentation and focus of the analysis are also important
in the assessment. The above marks are also not indicative of the relative amount of output/discussion
needed for each part, it is the quality of what is produced/discussed which matters.
• As always, the first step should be to do some exploratory analysis. However, you do not need to go
overboard on this. Explore the data yourself, but you only need to report the general picture, plus any
findings you think are particularly important.
• For the model fitting/selection, you can use any of the frequentist techniques we have covered to investigate
potential models - automated methods can be used to narrow down the search, but you can still use
hypothesis tests, e.g. if two different automated methods/criteria suggest slightly different models.
• Please make use of the help files for 𝑅 commands. Some functions may require you to change their
arguments a little from examples in the notes, or behaviour/output can be controlled by setting optional
arguments.
• You should check the model assumptions and whether conclusions are materially affected by any influential
data points.
• The task is deliberately open-ended: as this is a realistic situation with real data, there is not one single
correct answer, and different selection methods may suggest different “best” models - this is normal.
Your job is to investigate potential models using the information and techniques we have covered. The
important point is that you correctly use some of the relevant techniques in a logical and principled
manner, and provide a concise but insightful summary of your findings and reasoning. Note however
that you do not have to produce a report in a formal “report” format.
MATH2110
3 MATH2110
• You do not need to include all your 𝑅 output, as you will likely generate lots of output when experimenting.
For example, you may look at quite a large number of different plots and you might do lots of experimentation
in the model development stage. You only need to report the important plots/output which justify your
decisions and conclusions, and whilst there is no word or page limit, an overly-verbose analysis with
unnecessary output will detract from the impact.
MATH2110 End

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:推動電機行業創新升級,開創智能驅動未來新篇章
  • 下一篇:代寫 MATH5905、代做 Python/java 程序
  • ·代寫SE360、Java/Python程序代做
  • ·MISCADA代做、代寫Python程序語言
  • ·代寫CSE 231、代做Python程序語言
  • ·CP414編程代寫、代做Java/Python程序
  • ·CIV6782代做、代寫Python程序語言
  • ·CS305程序代做、代寫Python程序語言
  • ·代寫FN6806、代做c/c++,Python程序語言
  • ·代寫CS-UY 4563、Python程序語言代做
  • ·CE235編程代寫、代做python程序設計
  • ·COMP2010J代做、代寫c/c++,Python程序
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久久一区二区三区| 国产欧美一区二区精品秋霞影院| 久久亚洲欧美| 一区二区激情| 久久亚洲综合色| 国内不卡一区二区三区| 国内伊人久久久久久网站视频| 久久动漫亚洲| 亚洲一区在线免费观看| 亚洲欧美久久| 久久国产免费| 欧美性一区二区| 久久免费黄色| 国产精品久久久久久久久免费樱桃| 亚洲欧美日本在线| 99在线热播精品免费99热| 黄色免费成人| 欧美激情视频一区二区三区不卡| 欧美高清成人| 欧美日韩国产大片| 欧美精品九九| 在线观看亚洲视频啊啊啊啊| 久久激情五月激情| 日韩五码在线| 国外成人性视频| 一本色道久久88亚洲综合88| 欧美日韩在线播放一区二区| 国产精品网站一区| 国产午夜精品美女视频明星a级| 亚洲国产高清高潮精品美女| 亚洲国产精品一区| 亚洲线精品一区二区三区八戒| 在线欧美日韩精品| 久久这里只有精品视频首页| 麻豆精品精华液| 欧美日韩免费网站| 女人香蕉久久**毛片精品| 久久久美女艺术照精彩视频福利播放| 久久婷婷国产综合精品青草| 欧美日本精品一区二区三区| 亚洲高清视频在线观看| 亚洲精品在线观| 亚洲性线免费观看视频成熟| 久久久久久久高潮| 国产精品免费看久久久香蕉| 国产一区二区三区四区五区美女| 尤物精品国产第一福利三区| 国产精品久久精品日日| 亚洲成人在线网| 国产欧美一区二区色老头| 欧美在线视频a| 亚洲小说欧美另类婷婷| 中国成人亚色综合网站| 一区二区不卡在线视频 午夜欧美不卡在| 亚洲国产精品久久久久秋霞不卡| 欧美一区二区三区四区高清| 久久狠狠久久综合桃花| 国产精品黄色| 亚洲国产免费看| 亚洲免费在线看| 亚洲国产欧美不卡在线观看| 亚洲欧美国产日韩天堂区| 美女91精品| 一区二区三区回区在观看免费视频| 夜夜爽av福利精品导航| 欧美成人中文| 在线观看中文字幕亚洲| aa成人免费视频| 99国产精品国产精品毛片| 国产精品亚洲不卡a| 久久国产一区二区| 亚洲欧美中文在线视频| 性感少妇一区| 99综合在线| 麻豆国产精品777777在线| 嫩模写真一区二区三区三州| 久久全球大尺度高清视频| 欧美丰满高潮xxxx喷水动漫| 亚洲欧美韩国| 毛片基地黄久久久久久天堂| 日韩一级欧洲| 国产自产在线视频一区| 欧美国产日韩一区二区在线观看| 国产专区一区| 欧美日韩国产二区| 久久国产精品99久久久久久老狼| 欧美日韩视频不卡| 欧美一级久久| 国产精品日日摸夜夜摸av| 欧美日韩精品二区| 在线观看91精品国产麻豆| 一区二区三区蜜桃网| 在线日韩中文| 亚洲精品视频免费| 欧美一区二区在线视频| 国产精品呻吟| 国产麻豆9l精品三级站| 另类欧美日韩国产在线| 国产精品一卡| 国产在线视频欧美一区二区三区| 亚洲乱码国产乱码精品精| 国产精品一级在线| 在线观看一区二区精品视频| 国产亚洲综合性久久久影院| 久久爱另类一区二区小说| 国产精品久久久久久久久久久久久久| 欧美日韩一区二区三区视频| 香蕉尹人综合在线观看| 国产精品va在线播放我和闺蜜| 欧美日韩不卡合集视频| 欧美日韩综合视频网址| 国产精品女主播| 亚洲自拍偷拍福利| 久久久国产视频91| 宅男噜噜噜66国产日韩在线观看| 国产精品久久久久久久久久尿| 久久爱91午夜羞羞| 一本久久综合亚洲鲁鲁五月天| 亚洲午夜精品久久久久久app| 欧美成人午夜激情在线| 亚洲一区二区三区午夜| 欧美午夜精品久久久久久超碰| 欧美成人精品在线观看| 亚洲男人的天堂在线观看| 蜜臀久久99精品久久久画质超高清| 国产精品美女午夜av| 亚洲美女诱惑| 欧美精品在线观看91| 午夜精品久久久久| 久久精品久久综合| 国产日韩欧美二区| 国产欧美日韩另类一区| 巨乳诱惑日韩免费av| 午夜日韩在线观看| 亚洲最新合集| 久久夜色精品| 日韩午夜电影av| 欧美日韩在线播放三区| 国产一区二区在线观看免费播放| 久久国产精品高清| 欧美日韩一区二区在线视频| 黄色成人在线免费| 免费精品99久久国产综合精品| 免费国产一区二区| 久久久久久久精| 一区二区三区在线视频免费观看| 国产精品男gay被猛男狂揉视频| 亚洲精品久久久一区二区三区| 欧美日本不卡视频| 亚洲午夜性刺激影院| 国产一区二区精品久久99| 久久久久久久一区二区三区| 欧美小视频在线| 欧美一区二区三区免费观看视频| 欧美在线综合| 国产精品丝袜久久久久久app| 亚洲精品资源美女情侣酒店| 最近看过的日韩成人| 国产精品美女久久| 欧美色偷偷大香| 欧美午夜激情视频| 国产一区二区三区四区三区四| 激情六月婷婷久久| 国产日韩亚洲欧美综合|