日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫159.740編程、代做c/c++,Python程序
代寫159.740編程、代做c/c++,Python程序

時間:2024-11-04  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
Letter Recognition using Deep Neural Nets with Softmax Units 
Deadline: 4th of November 
Instructions: 
You are allowed to work in a group of 2 members for this assignment. 
Your task is to write a program that implements and tests a multi-layer feed-forward network for 
recognising characters defined in the UCI machine learning repository: 
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
Requirements: 
1. Use QT to develop your Neural Network application. A short tutorial on QT, and a start-up 
code that will help you get started quickly with the assignment is provided via Stream. 
2. You may utilise/consult codes available in books and websites provided that you cite them 
properly, explain the codes clearly, and incorporate them with the start-up codes provided. 
3. Implement a multi-layer feed-forward network using backpropagation learning and test it on the 
given problem domain using different network configurations and parameter settings. There 
should be at least 2 hidden layers in your neural network. 
h21 h11 X1
X2
F1
F2 h12 h22
OF1
OF2
δh21
δh22 δh12
δf1
δf2
δh11
… … … … 
X16
Fm Hi Hj
OFm
Input node
Legend: 
hidden node
output node = softmax unit
 Note that all nodes, except the input nodes have a bias node attached to it. 
159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
A. Inputs 
 16 primitive numerical attributes (statistical moments and edge counts) 
 The input values in the data set have been scaled to fit into a range of integer values 
from 0 through 15. It is up to you if you want to normalise the inputs before feeding 
them to your network. 
B. Data sets 
 Use the data set downloadable from: 
 Training set: use the first 16,000 
 Test set/Validation set: use the remaining 4,000 
 Submit your training data, validation/test data in separate files. 
C. Performance measure: 
 Mean Squared Error (MSE) 
 Percentage of Good Classification (PGC) 
 Confusion Matrix (only for the best Neural Network configuration found) 
D. Training 
 Provide a facility for shuffling data before feeding it to the network during training 
 Provide a facility for continuing network training after loading weights from file (do not 
reset the weights). 
 Provide a facility for training the network continuously until either the maximum 
epochs have been reached, or the target percentage of good classification has been met. 
 For each training epoch, record the Mean Squared Error and the Percentage of Good 
Classification in a text file. You need this to plot the results of training later, to 
compare the effects of the parameter settings and the architecture of your network. 
E. Testing the Network 
 Calculate the performance of the network on the Test set in terms of both the MSE and 
PGC. 
F. Network Architecture 
 It is up to you to determine the number of hidden layers and number of hidden nodes 
per hidden layer in your network. The minimum number of hidden layers is 2. 
 Use softmax units at the output layer 
 Experiment with ReLU and tanh as the activation functions of your hidden units 
 Determine the weight-update formulas based on the activation functions used 
4. Provide an interface in your program for testing the network using an input string consisting of 
the 16 attributes. The results should indicate the character classification, and the 26 actual 
numeric outputs of the network. (the start-up codes partly include this functionality already, for 
a simple 3-layer network (1 hidden layer), but you need to modify it to make it work for the 
multiple hidden layer architecture that you have designed). 
5. Provide an interface in your program for: 
A. Reading the entire data set 
B. Initialising the network 
C. Loading trained weights 
D. Saving trained weights 
E. Training the network up to a maximum number of epochs 
159.740 Intelligent Systems
Assignment #2 
F. Testing the network on a specified test set (from a file) 
G. Shuffling the training set. 
6. Set the default settings of the user interface (e.g. learning rate, weights, etc.) to the best 
configuration that delivered the best experiment results. 
7. Use a fixed random seed number (123) so that any randomisation can be replicated empirically. 
8. It is up to you to write the main program, and any classes or data structures that you may 
require. 
9. You may choose to use a momentum term or regularization term, as part of backpropagation 
learning. Indicate in your documentation, if you are using this technique. 
10. You need to modify the weight-update rules to reflect the correct derivatives of the activation 
function used in your network architecture. 
11. Provide graphs in Excel showing the network performance on training data and test data 
(similar to the graphs discussed in the lecture). 
12. Provide the specifications of your best trained network. Fill-up Excel workbook 
(best_network_configuration.xlsx). 
13. Provide a confusion matrix for the best NN classifier system found in your experiments. 
14. Provide a short user guide for your program. 
15. Fill-up the Excel file, named checklist.xlsx, to allow for accurate marking of your assignment. 
Criteria for marking 
 Documentation – 30% 
o Submit the trained weights of your best network (name it as best_weights.txt) 
o Generate a graph of the performance of your best performing network (MSE vs. 
Epochs) on the training set and test set. 
o Generate a confusion matrix of your best network 
o fill-up the Excel file, named checklist.xlsx
o fill-up the Excel file, named best_network_configuration.xlsx
o provide a short user guide for your program 
 System implementation – 70% 
Nothing follows. 
N.H.Reyes 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:DATA 2100代寫、代做Python語言編程
  • 下一篇:ME5701程序代寫、代做Matlab設計編程
  • ·代寫2530FNW、代做Python程序語言
  • ·代寫CIS5200、代做Java/Python程序語言
  • ·LCSCI4207代做、Java/Python程序代寫
  • ·代寫COP3502、Python程序設計代做
  • ·代做MLE 5217、代寫Python程序設計
  • ·代寫ISAD1000、代做Java/Python程序設計
  • ·代做COMP3811、C++/Python程序設計代寫
  • ·代寫SCIE1000、代做Python程序設計
  • ·代寫comp2022、代做c/c++,Python程序設計
  • ·CVEN9612代寫、代做Java/Python程序設計
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美美女喷水视频| 国产精品视频大全| 性欧美办公室18xxxxhd| 亚洲人成网站在线观看播放| 久久精品国产一区二区电影| 欧美成人r级一区二区三区| 欧美伊人久久久久久久久影院| 国产精品视频你懂的| 老色批av在线精品| 国产精品乱子久久久久| 亚洲欧美视频一区二区三区| 欧美人交a欧美精品| 欧美在线看片a免费观看| 在线亚洲一区| 1024精品一区二区三区| 日韩视频在线观看一区二区| 亚洲婷婷综合久久一本伊一区| 欧美手机在线| 欧美国产欧美亚洲国产日韩mv天天看完整| 久久久999精品视频| 日韩写真视频在线观看| 欧美一区二区三区视频在线观看| 久久综合国产精品| 国产视频一区二区在线观看| 国产亚洲综合精品| 国产精品视频网站| 国产精品一级二级三级| 欧美一区二区三区日韩| 欧美精彩视频一区二区三区| 亚洲一区二区三区久久| 亚洲国产高清在线观看视频| 麻豆av福利av久久av| 国内综合精品午夜久久资源| 亚洲精品视频中文字幕| 宅男在线国产精品| 免费看av成人| 欧美日韩在线观看视频| 亚洲每日更新| 99国产精品国产精品久久| 久久精品视频导航| 久久综合一区二区| 欧美在线免费观看视频| 老**午夜毛片一区二区三区| 亚洲男人av电影| 麻豆精品视频在线观看| 欧美在线免费观看亚洲| 午夜精品久久久久久久蜜桃app| 久久久999国产| 午夜视频在线观看一区二区三区| 亚洲日本视频| 国产亚洲精品7777| 免费h精品视频在线播放| 久久久国产精品一区二区三区| 久久久久久日产精品| 99精品国产在热久久| 亚洲欧美视频| 麻豆精品传媒视频| 狼人天天伊人久久| 亚洲午夜激情| 国产美女在线精品免费观看| 国产精品久久久久久久9999| 欧美午夜视频一区二区| 国产精品视频yy9299一区| 国产中文一区二区三区| 亚洲高清视频在线观看| 国产一区二区三区四区五区美女| 日韩一级在线观看| 亚洲欧美日韩视频一区| 久久精品青青大伊人av| 久久久国产91| 亚洲日韩第九十九页| 国产精品swag| 一区二区三区在线观看国产| 亚洲国产专区校园欧美| 欧美日韩ab片| 中文一区在线| 欧美日韩一区二| 亚洲精品视频啊美女在线直播| 欧美视频在线观看一区二区| 国产精品久久久久久久久免费樱桃| 亚洲第一精品影视| 午夜一区二区三区不卡视频| 国产精品美女在线| 国产精品久久久久9999吃药| 免费欧美电影| 一区二区三区视频观看| 欧美日本国产精品| 国产乱码精品一区二区三区五月婷| 国产精品久久久久免费a∨| 国产片一区二区| 欧美性事在线| 国产一区二区三区在线免费观看| 欧美色视频在线| 欧美色123| 欧美色道久久88综合亚洲精品| 国产日韩欧美亚洲| 国产精品久久国产愉拍| 亚洲激情专区| 久久成人精品无人区| 亚洲国产精品一区在线观看不卡| 性欧美xxxx视频在线观看| 黄色一区二区在线观看| 欧美性猛交99久久久久99按摩| 国产精品v亚洲精品v日韩精品| 欧美xart系列高清| 国产三级精品在线不卡| 欧美色图麻豆| 在线成人www免费观看视频| 国产精品免费看| 亚洲一区二三| 亚洲激情视频网| 狠狠噜噜久久| 久久久国产精彩视频美女艺术照福利| 99精品欧美一区二区三区综合在线| 久久久久久久网| 美女精品在线| 国产日韩一区二区三区| 免费亚洲电影在线| 销魂美女一区二区三区视频在线| 亚洲欧美偷拍卡通变态| 国产精品私房写真福利视频| 欧美日韩一区二区三区四区在线观看| 国产精品黄色在线观看| 国产精品欧美日韩一区| 国产区欧美区日韩区| 欧美精品久久一区二区| 亚洲一区二区三区三| 久久天天躁夜夜躁狠狠躁2022| 欧美午夜精品久久久久免费视| 国产日韩欧美一区二区三区四区| 免费中文字幕日韩欧美| 国产女同一区二区| 亚洲国产高清高潮精品美女| 亚洲一区二区三区精品在线| 亚洲毛片av| 久久精品成人欧美大片古装| 欧美高清在线| 亚洲精品一区二区三| 国产亚洲免费的视频看| 欧美人妖在线观看| 一区二区久久久久久| 欧美jjzz| 久久久久欧美| 亚洲美女免费精品视频在线观看| 久久久久久夜| 韩国三级在线一区| 欧美黄色精品| 国产精品老女人精品视频| 9久草视频在线视频精品| 欧美午夜精品久久久久久人妖| 欧美天堂在线观看| 国产精品观看| 激情综合激情| 香蕉av777xxx色综合一区| 欧美国产综合一区二区| 欧美大片网址| 国产精品v日韩精品v欧美精品网站| 在线一区观看| 洋洋av久久久久久久一区| 亚洲国产日韩一区二区| 亚洲黄色大片| 韩国一区电影| 亚洲福利电影| 麻豆精品一区二区av白丝在线|