日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫159.740編程、代做c/c++,Python程序
代寫159.740編程、代做c/c++,Python程序

時間:2024-11-04  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
Letter Recognition using Deep Neural Nets with Softmax Units 
Deadline: 4th of November 
Instructions: 
You are allowed to work in a group of 2 members for this assignment. 
Your task is to write a program that implements and tests a multi-layer feed-forward network for 
recognising characters defined in the UCI machine learning repository: 
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
Requirements: 
1. Use QT to develop your Neural Network application. A short tutorial on QT, and a start-up 
code that will help you get started quickly with the assignment is provided via Stream. 
2. You may utilise/consult codes available in books and websites provided that you cite them 
properly, explain the codes clearly, and incorporate them with the start-up codes provided. 
3. Implement a multi-layer feed-forward network using backpropagation learning and test it on the 
given problem domain using different network configurations and parameter settings. There 
should be at least 2 hidden layers in your neural network. 
h21 h11 X1
X2
F1
F2 h12 h22
OF1
OF2
δh21
δh22 δh12
δf1
δf2
δh11
… … … … 
X16
Fm Hi Hj
OFm
Input node
Legend: 
hidden node
output node = softmax unit
 Note that all nodes, except the input nodes have a bias node attached to it. 
159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
A. Inputs 
 16 primitive numerical attributes (statistical moments and edge counts) 
 The input values in the data set have been scaled to fit into a range of integer values 
from 0 through 15. It is up to you if you want to normalise the inputs before feeding 
them to your network. 
B. Data sets 
 Use the data set downloadable from: 
 Training set: use the first 16,000 
 Test set/Validation set: use the remaining 4,000 
 Submit your training data, validation/test data in separate files. 
C. Performance measure: 
 Mean Squared Error (MSE) 
 Percentage of Good Classification (PGC) 
 Confusion Matrix (only for the best Neural Network configuration found) 
D. Training 
 Provide a facility for shuffling data before feeding it to the network during training 
 Provide a facility for continuing network training after loading weights from file (do not 
reset the weights). 
 Provide a facility for training the network continuously until either the maximum 
epochs have been reached, or the target percentage of good classification has been met. 
 For each training epoch, record the Mean Squared Error and the Percentage of Good 
Classification in a text file. You need this to plot the results of training later, to 
compare the effects of the parameter settings and the architecture of your network. 
E. Testing the Network 
 Calculate the performance of the network on the Test set in terms of both the MSE and 
PGC. 
F. Network Architecture 
 It is up to you to determine the number of hidden layers and number of hidden nodes 
per hidden layer in your network. The minimum number of hidden layers is 2. 
 Use softmax units at the output layer 
 Experiment with ReLU and tanh as the activation functions of your hidden units 
 Determine the weight-update formulas based on the activation functions used 
4. Provide an interface in your program for testing the network using an input string consisting of 
the 16 attributes. The results should indicate the character classification, and the 26 actual 
numeric outputs of the network. (the start-up codes partly include this functionality already, for 
a simple 3-layer network (1 hidden layer), but you need to modify it to make it work for the 
multiple hidden layer architecture that you have designed). 
5. Provide an interface in your program for: 
A. Reading the entire data set 
B. Initialising the network 
C. Loading trained weights 
D. Saving trained weights 
E. Training the network up to a maximum number of epochs 
159.740 Intelligent Systems
Assignment #2 
F. Testing the network on a specified test set (from a file) 
G. Shuffling the training set. 
6. Set the default settings of the user interface (e.g. learning rate, weights, etc.) to the best 
configuration that delivered the best experiment results. 
7. Use a fixed random seed number (123) so that any randomisation can be replicated empirically. 
8. It is up to you to write the main program, and any classes or data structures that you may 
require. 
9. You may choose to use a momentum term or regularization term, as part of backpropagation 
learning. Indicate in your documentation, if you are using this technique. 
10. You need to modify the weight-update rules to reflect the correct derivatives of the activation 
function used in your network architecture. 
11. Provide graphs in Excel showing the network performance on training data and test data 
(similar to the graphs discussed in the lecture). 
12. Provide the specifications of your best trained network. Fill-up Excel workbook 
(best_network_configuration.xlsx). 
13. Provide a confusion matrix for the best NN classifier system found in your experiments. 
14. Provide a short user guide for your program. 
15. Fill-up the Excel file, named checklist.xlsx, to allow for accurate marking of your assignment. 
Criteria for marking 
 Documentation – 30% 
o Submit the trained weights of your best network (name it as best_weights.txt) 
o Generate a graph of the performance of your best performing network (MSE vs. 
Epochs) on the training set and test set. 
o Generate a confusion matrix of your best network 
o fill-up the Excel file, named checklist.xlsx
o fill-up the Excel file, named best_network_configuration.xlsx
o provide a short user guide for your program 
 System implementation – 70% 
Nothing follows. 
N.H.Reyes 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:DATA 2100代寫、代做Python語言編程
  • 下一篇:ME5701程序代寫、代做Matlab設計編程
  • ·代寫2530FNW、代做Python程序語言
  • ·代寫CIS5200、代做Java/Python程序語言
  • ·LCSCI4207代做、Java/Python程序代寫
  • ·代寫COP3502、Python程序設計代做
  • ·代做MLE 5217、代寫Python程序設計
  • ·代寫ISAD1000、代做Java/Python程序設計
  • ·代做COMP3811、C++/Python程序設計代寫
  • ·代寫SCIE1000、代做Python程序設計
  • ·代寫comp2022、代做c/c++,Python程序設計
  • ·CVEN9612代寫、代做Java/Python程序設計
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲精选视频在线| 亚洲一区观看| 欧美麻豆久久久久久中文| 欧美丝袜一区二区三区| 欧美高潮视频| 国产精品精品视频| 欧美丝袜一区二区| 在线观看视频免费一区二区三区| 亚洲综合不卡| 国产日韩在线播放| 黄色成人免费观看| 亚洲国产成人久久综合| 性色av香蕉一区二区| 亚洲精一区二区三区| 国产日产精品一区二区三区四区的观看方式| 国产日韩欧美在线播放不卡| 亚洲精品欧美一区二区三区| 久久激情网站| 国产精品久久久久久久久久直播| 亚洲视频1区2区| 中日韩在线视频| 欧美电影免费观看高清完整版| 亚洲日本中文字幕区| 久久精品欧美日韩精品| 国产精品sm| 欧美日韩极品在线观看一区| 国产精品嫩草久久久久| 国产精品99久久99久久久二8| 亚洲成色最大综合在线| 亚洲综合大片69999| 国产一区香蕉久久| 亚洲国产老妈| 亚洲高清免费视频| 欧美+日本+国产+在线a∨观看| 欧美成人一区二区三区片免费| 欧美精品导航| 一本色道婷婷久久欧美| 久久成人精品无人区| 欧美日韩亚洲一区| 在线观看日韩av先锋影音电影院| 亚洲福利一区| 国产一区二区三区久久| 久久久久久有精品国产| 国产精品videossex久久发布| 毛片精品免费在线观看| 久久国产精品高清| 欧美寡妇偷汉性猛交| 欧美日韩国产bt| 亚洲理论在线观看| 美女脱光内衣内裤视频久久网站| 国产亚洲一二三区| 国产日产精品一区二区三区四区的观看方式| 欧美午夜无遮挡| 国产精品香蕉在线观看| 亚洲日本一区二区| 国产精品扒开腿做爽爽爽视频| 久久婷婷人人澡人人喊人人爽| 欧美视频在线一区二区三区| 亚洲人成人77777线观看| 亚洲区中文字幕| 国产精品手机在线| 欧美午夜精品久久久久久超碰| 国产一区二区三区精品欧美日韩一区二区三区| 国产精品www994| 亚洲国产成人精品女人久久久| 欧美日韩中文另类| 亚洲天堂av电影| 国产精品久久9| 国产精品天天摸av网| 欧美午夜久久| 欧美亚洲第一页| 老鸭窝亚洲一区二区三区| 久久精品日韩欧美| 亚洲色在线视频| 中文久久精品| 亚洲精品在线电影| 美日韩精品免费观看视频| 国产精品美女午夜av| 伊人久久av导航| 亚洲精品久久久久久下一站| 国产亚洲激情视频在线| 国产精品视频精品视频| 亚洲欧美在线一区二区| 日韩亚洲欧美中文三级| 欧美第一黄色网| 一本大道久久a久久综合婷婷| 亚久久调教视频| 亚洲欧洲另类| 欧美精品v日韩精品v国产精品| 一区视频在线播放| 欧美精品三区| 美女国内精品自产拍在线播放| 亚洲人体大胆视频| 国产亚洲精品自拍| 欧美精品一区在线发布| 亚洲另类在线视频| 亚洲精品视频在线观看免费| 亚洲欧洲日夜超级视频| 亚洲综合国产激情另类一区| 日韩亚洲欧美高清| 最新亚洲一区| 日韩视频亚洲视频| 久久久久国产精品一区三寸| 亚洲伦理在线观看| 久久精品av麻豆的观看方式| 久久久久看片| 国产日产高清欧美一区二区三区| 久久精品青青大伊人av| 国产区欧美区日韩区| 久久aⅴ乱码一区二区三区| 久久精品欧洲| 性色av一区二区怡红| 亚洲高清影视| 国产视频一区二区在线观看| 久久精品2019中文字幕| 亚洲欧美一区二区视频| 激情小说另类小说亚洲欧美| 欧美日韩国产另类不卡| 国产麻豆一精品一av一免费| 一区二区三区在线视频播放| 久久久免费精品视频| 亚洲美女少妇无套啪啪呻吟| 欧美日韩一区二| 欧美日本不卡视频| 国产精品麻豆欧美日韩ww| 国产在线播放一区二区三区| 欧美自拍丝袜亚洲| 榴莲视频成人在线观看| 欧美一区二区三区免费观看视频| 欧美成人综合网站| 国产精品天天看| 欧美日韩麻豆| 久久久久久久一区二区三区| 99热这里只有精品8| 久久琪琪电影院| 欧美韩日一区二区三区| 欧美日韩国产综合视频在线观看中文| 亚洲福利在线观看| 国产一在线精品一区在线观看| 国产精品露脸自拍| 久久久久久夜精品精品免费| 欧美va亚洲va国产综合| 国产精品私拍pans大尺度在线| 在线亚洲精品福利网址导航| 国产一级揄自揄精品视频| 精品96久久久久久中文字幕无| 亚洲老板91色精品久久| 久久国产88| 欧美黄色一区| 欧美成人r级一区二区三区| 亚洲一区二区三区四区五区午夜| 一区免费观看| 日韩一二在线观看| 你懂的成人av| 欧美多人爱爱视频网站| 亚洲视频一起| 国产欧美综合一区二区三区| 西西人体一区二区| 悠悠资源网亚洲青| 日韩视频在线免费观看| 亚洲欧美国产77777| 国产精品久久久久久久浪潮网站| 国产一区二区三区丝袜| 亚洲图片欧洲图片日韩av|