日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做MLE 5217、代寫Python程序設計
代做MLE 5217、代寫Python程序設計

時間:2024-10-23  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Dept. of Materials Science & Engineering NUS
MLE 5217 : Take-Home Assignments
Objectives
Based on the chemical composition of materials build a classiffcation model to distinguish metals and non-metals
(Model 1), and then build a regression model to predict the bandgap of non-metallic compounds (Model 2).
Please use a separate jupyter notebook for each of the models.
Data
The data contains the chemical formula and energy band gaps (in eV) of experimentally measured compounds.
These measurements have been obtained using a number of techniques such as diffuse reffectance, resistivity
measurements, surface photovoltage, photoconduction, and UV-vis measurements. Therefore a given compound
may have more than one measurement value.
Tasks
Model I (30 marks)
Dataset: Classiffcation data.csv
Fit a Support Vector Classiffcation model to separate metals from non-metals in the data. Ensure that you:
• Follow the usual machine learning process.
• Use a suitable composition based feature vector to vectorize the chemical compounds.
• You may use your judgement on how to differentiate between metals & non-metals. As a guide, two possible
options are given below.
Option 1 : for metals Eg = 0, and Non-metals Eg > 0
Option 2: for metals Eg ≤ 0.5, for non-metals Eg > 0.5
• Use suitable metrics to quantify the performance of the classiffer.
• For added advantage you may optimize the hyper-parameters of the Support Vector Classiffer. Note: Optimization
 algorithms can require high processing power, therefore may cause your computer to freeze (Ensure
you have saved all your work before you run such codes). In such a case you may either do a manual
optimization or leave the code without execution.
• Comment on the overall performance of the model.
Model II (30 marks)
Dataset: Regression data.csv
Fit a Regression Equation to the non-metals to predict the bandgap energies based on their chemical composition
• Use a suitable composition based feature vector to vectorize the chemical compounds. You may try multiple
feature vectors and analyse the outcomes.
• You may experiment with different models for regression analysis if required.
• Comment on the overall performance of the model and suggest any short-comings or potential improvements.
September 2024Important : Comments
• Write clear comments in the code so that a user can follow the logic.
• In instances where you have made decisions, justify them.
• In instances where you may have decided to follow a different analysis path (than what is outlined in the
tasks), explain your thinking in the comments.
• Acknowledge (if any) references used at the bottom of the notebook.
Submission
• Ensure that each of the cells of code in the ffnal Jupyter notebooks have been Run for output (Except for
the hyper-parameter optimization if any).
• The two models (I and II) have been entered in two separate notebooks.
• Name the ffles by your name as ”YourName 1.ipynb” and ”YourName 2.ipynb”
• It is your responsibility to Ensure that the correct ffles are being submitted, and the ffle extensions
are in the correct format (.ipynb).
• Submission will be via Canvas, and late submissions will be penalized.
Evaluation
The primary emphasis will be on the depth and thoroughness of your approach to the problem. Key areas of focus
will include:
* Data Exploration: Demonstrating a thorough investigation of the data, exploring different analytical
possibilities, and thoughtfully selecting the best course of action.
* Implementation: Translating your chosen approach into clean and efffcient code.
* Machine Learning Process: Executing the machine learning process correctly and methodically, ensuring
proper data handling, model selection, and evaluation.
* Clarity of Explanation: Providing clear explanations of each step, with logical reasoning for the decisions made.
*Critical Analysis: Identifying any limitations of the approach, suggesting potential improvements, and making
relevant statistical inferences based on the results.
================================================================


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:代寫ISAD1000、代做Java/Python程序設計
  • 下一篇:代寫Battleship 、代做Game 設計程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产精品久久久久一区二区三区| 欧美日韩网址| 久久嫩草精品久久久精品| 亚洲一区在线视频| 久久精品国产清高在天天线| 久久久久久久波多野高潮日日| 欧美一级成年大片在线观看| 欧美深夜福利| 国产一区导航| 伊人久久亚洲影院| 欧美精品一区二区在线观看| 亚洲国产精品视频| 麻豆精品视频在线观看| 亚洲国产高清一区| 亚洲精品日韩在线观看| 欧美 日韩 国产一区二区在线视频| 亚洲欧美一区二区三区久久| 午夜欧美大尺度福利影院在线看| 久久精品国产清自在天天线| 国产麻豆精品在线观看| 国产日韩欧美三级| 在线精品视频免费观看| 在线视频精品| 一级成人国产| 欧美久久九九| 99v久久综合狠狠综合久久| 欧美色道久久88综合亚洲精品| 欧美国产在线电影| 欧美韩国日本综合| 亚洲二区在线观看| 久久久久久久久久久久久女国产乱| 亚洲一区二区三区国产| 国产精品午夜视频| 蜜桃久久精品乱码一区二区| 99riav久久精品riav| 国产精品中文字幕在线观看| 激情小说另类小说亚洲欧美| 在线观看视频一区二区欧美日韩| 亚洲黄色成人久久久| 国产自产2019最新不卡| 国产综合一区二区| 日韩午夜中文字幕| 狠狠色丁香久久婷婷综合_中| 狠狠色综合一区二区| 欧美日韩国产色综合一二三四| 亚洲一区欧美一区| 国产视频亚洲| 影音先锋亚洲一区| 欧美视频三区在线播放| 国产视频一区欧美| 国产精品国产三级国产专播精品人| 亚洲视频在线观看视频| 久久久久久久综合日本| 欧美mv日韩mv国产网站| 亚洲一区3d动漫同人无遮挡| 亚洲一区免费在线观看| 亚洲福利国产精品| 欧美日韩hd| 欧美电影在线| 欧美精品 国产精品| 欧美bbbxxxxx| 亚洲免费观看高清完整版在线观看熊| 久久中文精品| 99re66热这里只有精品3直播| 91久久久一线二线三线品牌| 国产精品99久久久久久www| 国产精品www| 亚洲性视频网站| 欧美日韩国产999| 欧美精品日韩一本| 性高湖久久久久久久久| 国产精品久久久99| 亚洲欧美国产精品va在线观看| 国产精品理论片在线观看| 亚洲人成网站精品片在线观看| 日韩一区二区免费高清| 久久久综合香蕉尹人综合网| 久久国产成人| 国产丝袜一区二区| 亚洲精品久久久久久久久久久久久| 狠狠干成人综合网| 欧美三级乱人伦电影| 国产精品嫩草影院av蜜臀| 免费在线观看一区二区| 国内外成人免费视频| 欧美一区1区三区3区公司| 欧美日韩免费在线视频| 欧美在线一区二区三区| 亚洲视频中文字幕| 欧美在线播放一区| 欧美一区二区大片| 欧美www视频在线观看| 欧美人与禽猛交乱配视频| 亚洲一级高清| 一区二区三区无毛| 国产精品久久网站| 国产一级揄自揄精品视频| 一本久道久久综合狠狠爱| 亚洲国产视频a| 亚洲女人天堂成人av在线| 午夜精品区一区二区三| 亚洲福利视频在线| 亚洲免费成人av| 欧美吻胸吃奶大尺度电影| 亚洲资源在线观看| 狠狠色丁香婷婷综合影院| 在线视频成人| av成人动漫| 亚洲欧美成人网| 国产一区二区三区四区老人| 国产亚洲福利一区| 在线成人av| 国产精品一区二区三区观看| 久久久九九九九| 在线一区二区三区四区| 国产精品大片wwwwww| 久久久久欧美| 国产精品久久久久久久久婷婷| 亚洲手机视频| 久久婷婷丁香| 国产精品毛片高清在线完整版| 性色av香蕉一区二区| 欧美成人资源| 午夜精品在线看| 一区二区三区成人精品| 久久久777| 国产精品资源在线观看| 欧美天堂亚洲电影院在线观看| 午夜亚洲激情| 久久综合伊人77777| 国产精品久久网| 一本久道久久综合婷婷鲸鱼| 亚洲一区二区三区四区五区黄| 99视频热这里只有精品免费| 亚洲综合日韩| 欧美美女日韩| 欧美日韩一区二区三区在线观看免| 免费久久99精品国产自| 伊人成人在线| 久久人人看视频| 国产精品久久毛片a| 亚洲精品激情| 免费成人你懂的| 亚洲大胆美女视频| 亚洲一区二区动漫| 亚洲三级视频在线观看| 久久欧美肥婆一二区| 欧美三级午夜理伦三级中文幕| 亚洲欧美日韩国产另类专区| 亚洲精品美女久久久久| 国产精品高潮在线| 亚洲日本欧美日韩高观看| 国产精品永久免费在线| 欧美伦理视频网站| 一区二区三区鲁丝不卡| 亚洲午夜影视影院在线观看| 亚洲黄网站在线观看| 免费在线成人av| 国产亚洲欧美激情| 亚洲视频大全| 久久久精品2019中文字幕神马| 国产视频一区在线观看| 亚洲自拍三区| 欧美电影免费观看|