日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

STAT4602代寫、代做Java/Python編程
STAT4602代寫、代做Java/Python編程

時間:2025-04-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



STAT4602 Multivariate Data Analysis Assignment 2
Hand in solutions for ALL questions by April 23 (Wednesday), 2025,
11:59pm
1. The file IRIS.DAT gives a dataset containing 4 measurements for 3 species
of iris. In the dataset, each row corresponds to one observation. The first 4
columns gives the 4 measurements, and the last column takes values 1, 2, 3,
corresponding to the 3 species of iris.
(a) Perform multivariate regression for each species separately, treating the
two sepal measures (x1 and x2) as response variables, and the two petal
measures (x3 and x4) as indepedent variables. Report the fitted models.
(b) For the species “versicolour” (serial number 2), test whether the two sets of
regression coefficients (excluding intercepts) are the same in the regression
equations for x1 and for x2.
(c) Consider a multivariate linear model as in (a), but incorporate the
3 species in the model with the aid of additional dummy variables.
Specifically, intorduce new variables:
• s ∈ {0, 1}: s = 1 if species = 1, and s = 0 otherwise.
• v ∈ {0, 1}: v = 1 if species = 2, and v = 0 otherwise.
• sx3 = s · x3: sx3 = x3 if species = 1, and sx3 = 0 otherwise.
• sx4 = s · x4: sx4 = x4 if species = 1, and sx4 = 0 otherwise.
• vx3 = v · x3: vx3 = x3 if species = 2, and vx3 = 0 otherwise.
• vx4 = v · x4: vx4 = x4 if species = 2, and vx4 = 0 otherwise.
Perform the regression and test the hypothesis that the 3 species have
the same model.
(d) For a input with species = 1, 2, 3, is the model obtained in (c) equivalent
to the 3 separate multivariate regression models obtained in (a)?
2. Consider the data given by CORKDATA.sas in Question 1 of Assignment 1:
N E S W N E S W
72 66 76 77 91 79 100 75
60 53 66 63 56 68 47 50
56 57 64 58 79 65 70 61
41 29 36 38 81 80 68 58
32 32 35 36 78 55 67 60
30 35 34 26 46 38 37 38
39 39 31 27 39 35 34 37
42 43 31 25 32 30 30 32
37 40 31 25 60 50 67 54
33 29 27 36 35 37 48 39
32 30 34 28 39 36 39 31
63 45 74 63 50 34 37 40
54 46 60 52 43 37 39 50
47 51 52 45 48 54 57 43
(a) Find the principal components based on the covariance matrix. Interpret
them if possible.
HKU STAT4602 (2024-25, Semester 2) 1
STAT4602 Multivariate Data Analysis Assignment 2
(b) How many principal components would you suggest to retain in
summarizing the total variability of the data? Give reasons, including
results of statistical tests if appropriate.
(c) Repeat (a) and (b) using the correlation matrix instead.
(d) Compare and comment on the two sets of results for covariance and
correlation matrices. Recommend a set of results and explain why.
3. Annual financial data are collected for bankrupt firms approximately 2 years
prior to their bankruptcy and for financially sound firms at about the same
time. The data on four variables, X1 = (cash flow) / (total debt), X2 = (net
income) / (total assets), X3 = (current assets) / (current liabilities) and X4 =
(current assets) / (net sales) are stored in the file FINANICALDATA.TXT. In
addition, a categorical variable Y identifies whether a firm is bankrupt (Y = 1)
or non-bankrupt (Y = 2).
(a) Apply the linear discriminant analysis (LDA) to classify the firms into
a bankrupt group and a non-bankrupt group. Calculate the error rates
with cross-validation and report the results.
(b) Apply quadratic discriminant analysis (QDA) to classify the firms,
perform cross-validation and report the results.
4. The distances between pairs of five items are as follows:
Cluster the five items using the single linkage, complete linkage, and average
linkage hierarchical methods. Compare the results.
5. Consider multivariate linear regression with the following data structure:
individual Y1 Y2 · · · Yp X1 X2 · · · Xk
1 y11 y12 · · · y1p x11 x12 · · · x1k
2 y21 y22 · · · y2p x21 x22 x2k
n yn1 yn2 · · · ynp xn1 xn2 · · · xnk
The regression model is given as
Y
n×p
= Xn×k
B
k×p
+ Un×p
,
HKU STAT4602 (2024-25, Semester 2) 2
STAT4602 Multivariate Data Analysis Assignment 2
where the matrices Y , X, B and U are given as follows:
Here for i = 1, . . . , n, the vector of errors of observation i is εi =
(εj1, εj2, · · · , εjp)

, and we assume that ε1, . . . , εn
iid∼ Np(0, Σ).
(a) We know that the maximum likelihood estimator of B and Σ are:
Bˆ = (X′X)
−1 X′Y , Σˆ =
1
n


Uˆ , where Uˆ = Y − XBˆ .
Calculate the maximum value of the log-likelihood function
ℓ(B, Σ) = −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[(Y − XB)Σ
−1
(Y − XB)

]
= −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[Σ
−1
(Y − XB)

(Y − XB)].
(b) Plug in the definition of Bˆ and express Uˆ as a matrix calculated based
on X and Y . Calculate X⊤Uˆ and Uˆ

X.
(c) Prove the identity
(Y − XB)

(Y − XB)
= (Y − XBˆ )

(Y − XBˆ ) + (XBˆ − XB)

(XBˆ − XB).
Hint: by definition, Y − XBˆ = Uˆ , and we have
(Y − XB)

(Y − XB)
= (Y − XBˆ + XBˆ − XB)

(Y − XBˆ + XBˆ − XB).
6. Consider p random variables X1, . . . , Xp. Suppose that Y1, . . . , Yp are the first
to the p-th population principle components of X1, . . . , Xp.
(a) What are the population principle components of the random variables
Y1, . . . , Yp? Why?
(b) Suppose that the population covariance matrix of (X1, . . . , Xp)

is Σ and
its eigenvalue decomposition is
Σ =
p
X
i=1
λiαiα

i
,
where α1, . . . , αp are orthogonal unit vectors. What is the covariance
bewteen X1 and Y1?
7. Consider a k-class classification task with ni observations in class i, i =
1, . . . , k. Define matrices
H =
k
X
j=1
nj (x¯·j − x¯··)(x¯·j − x¯··)

, E =
k
X
j=1
nj
X
i=1
(xij − x¯·j )(xij − x¯·j )

, S =
n
E
− k
.
HKU STAT4602 (2024-25, Semester 2) 3
STAT4602 Multivariate Data Analysis Assignment 2
In LDA for multiclass classification, we consider the eigenvalue decompostion
E
−1Hai = ℓiai
, i = 1, . . . , s, s = rank(E
−1H).
where a1, . . . , as satisfy a

iSai = 1 and a

iSai
′ = 0 for all i, i′ = 1, . . . , s, i = i

.
(a) While the above definitions were introduced in the case of multiclass
classification (k > 2), we may check to what extent these definitions are
reasonable in binary classification (k = 2). In this case, we have the
sample means within class 1 and class 2 as x¯·1 and x¯·2 respectively. Can
you calculate the overall mean x¯·· based on x¯·1, x¯·2 and n1, n2?
(b) For k = 2, express H as a matrix calculated based on x¯·1, x¯·2 and n1, n2.
(c) What is the rank of the matrix H when k = 2?
(d) We mentioned in the lecture that we can simply use one Fisher
discriminant function for binary classification. Can we adopt the
definitions above to define more than one Fisher discriminant functions
for binary classification? Why?
HKU STAT4602 (2024-25, Semester 2) 4

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:STAT4602代寫、代做Java/Python編程
  • 下一篇:代做 ECE391、代寫 C/C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产午夜精品久久| 一区二区三区在线视频免费观看| 亚洲国产高清一区二区三区| 欧美日韩免费区域视频在线观看| 亚洲一区在线视频| 欧美久久久久免费| 黑人中文字幕一区二区三区| 国产一区二区在线免费观看| 午夜亚洲激情| 亚洲黄色一区二区三区| 在线日韩精品视频| 欧美激情视频一区二区三区在线播放| 欧美日韩国产一级片| 国产精品护士白丝一区av| 国产精品人人做人人爽| 欧美专区在线| 欧美日韩一级片在线观看| 国内精品久久久久久久97牛牛| 亚洲一区二区三区四区视频| 午夜一区二区三视频在线观看| 亚欧美中日韩视频| 欧美日本一区二区高清播放视频| 国产精品久久久久秋霞鲁丝| 性色一区二区三区| 久久久久久九九九九| 久久蜜桃香蕉精品一区二区三区| 国内精品久久久久久| 久久精品夜色噜噜亚洲a∨| 国产色产综合产在线视频| 欧美激情精品久久久久久变态| 国产精品三上| 久久精品亚洲一区二区三区浴池| 欧美一区二区高清在线观看| 伊人男人综合视频网| 久久精品国产亚洲高清剧情介绍| 国产欧美一区在线| 午夜视频在线观看一区二区| 久久综合九色综合欧美就去吻| 正在播放日韩| 欧美激情一区二区三区成人| 欧美日韩国产色视频| 欧美连裤袜在线视频| 久久久福利视频| 亚洲欧美精品在线| 亚洲一区免费网站| 欧美二区视频| 欧美成人一区二区| 亚洲视频一区二区在线观看| 国产麻豆精品theporn| 在线免费日韩片| 欧美日韩直播| 合欧美一区二区三区| 狂野欧美激情性xxxx| 亚洲女女女同性video| 99精品久久免费看蜜臀剧情介绍| 在线免费精品视频| 欧美喷水视频| 在线观看欧美激情| 亚洲黄色一区| 亚洲破处大片| 欧美成人久久| 日韩视频免费在线观看| 羞羞漫画18久久大片| 亚洲自拍电影| 久久精品国产亚洲一区二区三区| 国产免费亚洲高清| 久久精品国产99国产精品澳门| 欧美日韩免费观看一区二区三区| 国产精品看片资源| 亚洲免费人成在线视频观看| 99riav1国产精品视频| 亚洲欧美日韩综合| 亚洲人成人一区二区在线观看| 极品尤物久久久av免费看| 久久久久国产精品一区三寸| 亚洲一区二区久久| 欧美丰满高潮xxxx喷水动漫| 亚洲综合精品自拍| 欧美一区不卡| 国产精品久久久久久影院8一贰佰| 你懂的成人av| 国产精品乱码人人做人人爱| 亚洲国产精品一区二区尤物区| 欧美一区二区三区四区在线观看地址| 欧美成人精品一区二区三区| 夜夜嗨网站十八久久| 欧美日韩综合视频网址| 久久人人爽人人爽爽久久| 日韩视频免费在线观看| 国产在线欧美| 激情成人av| 久久久久国产精品www| 久久久久高清| 在线观看中文字幕亚洲| 国产一区欧美日韩| 精品动漫3d一区二区三区免费版| 久久夜色撩人精品| 国产精品国产三级国产| 国产精品视频免费一区| 亚洲视频免费看| 亚洲激情电影中文字幕| 欧美一级片一区| 亚洲精品五月天| 欧美国产精品久久| 免费日本视频一区| 亚洲线精品一区二区三区八戒| 国产在线观看一区| 久久蜜桃资源一区二区老牛| 欧美成人高清| 国内精品视频在线播放| 伊人天天综合| 性一交一乱一区二区洋洋av| 国产日韩欧美一区在线| 久久久久国产成人精品亚洲午夜| 美女精品一区| 欧美成人tv| 91久久精品一区| 欧美激情综合色| 欧美日韩在线看| 毛片一区二区三区| 亚洲在线观看免费| 一本久久a久久免费精品不卡| 9色porny自拍视频一区二区| 欧美日韩精品国产| 日韩视频一区二区| 亚洲大片免费看| 亚洲婷婷国产精品电影人久久| 日韩一级二级三级| 亚洲综合不卡| 欧美三级在线视频| 亚洲欧美区自拍先锋| 日韩视频在线一区二区三区| 久久久久一区二区| 国产精品手机视频| 亚洲精品国久久99热| 久久久久国色av免费看影院| 国产精品sss| 9色porny自拍视频一区二区| 亚洲国产精品第一区二区| 亚洲毛片视频| 欧美freesex8一10精品| 欧美福利一区二区| 国产日韩欧美综合一区| 久久精品免费观看| 国产精品一区二区在线观看网站| 国产精品视频大全| 欧美激情一二区| 极品av少妇一区二区| 久久蜜桃av一区精品变态类天堂| 久久一区免费| 亚洲欧洲精品一区二区三区| 亚洲一区欧美二区| 国产人成精品一区二区三| 久久综合伊人77777尤物| 久久在线视频| 性欧美xxxx大乳国产app| 国产亚洲aⅴaaaaaa毛片| 麻豆成人在线播放| 亚洲精品在线观看免费| 亚洲欧洲精品一区二区三区不卡| 亚洲免费视频中文字幕| 欧美—级a级欧美特级ar全黄| 国产精品久久久久久妇女6080| 影音先锋一区|