日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

STAT4602代寫、代做Java/Python編程
STAT4602代寫、代做Java/Python編程

時間:2025-04-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



STAT4602 Multivariate Data Analysis Assignment 2
Hand in solutions for ALL questions by April 23 (Wednesday), 2025,
11:59pm
1. The file IRIS.DAT gives a dataset containing 4 measurements for 3 species
of iris. In the dataset, each row corresponds to one observation. The first 4
columns gives the 4 measurements, and the last column takes values 1, 2, 3,
corresponding to the 3 species of iris.
(a) Perform multivariate regression for each species separately, treating the
two sepal measures (x1 and x2) as response variables, and the two petal
measures (x3 and x4) as indepedent variables. Report the fitted models.
(b) For the species “versicolour” (serial number 2), test whether the two sets of
regression coefficients (excluding intercepts) are the same in the regression
equations for x1 and for x2.
(c) Consider a multivariate linear model as in (a), but incorporate the
3 species in the model with the aid of additional dummy variables.
Specifically, intorduce new variables:
• s ∈ {0, 1}: s = 1 if species = 1, and s = 0 otherwise.
• v ∈ {0, 1}: v = 1 if species = 2, and v = 0 otherwise.
• sx3 = s · x3: sx3 = x3 if species = 1, and sx3 = 0 otherwise.
• sx4 = s · x4: sx4 = x4 if species = 1, and sx4 = 0 otherwise.
• vx3 = v · x3: vx3 = x3 if species = 2, and vx3 = 0 otherwise.
• vx4 = v · x4: vx4 = x4 if species = 2, and vx4 = 0 otherwise.
Perform the regression and test the hypothesis that the 3 species have
the same model.
(d) For a input with species = 1, 2, 3, is the model obtained in (c) equivalent
to the 3 separate multivariate regression models obtained in (a)?
2. Consider the data given by CORKDATA.sas in Question 1 of Assignment 1:
N E S W N E S W
72 66 76 77 91 79 100 75
60 53 66 63 56 68 47 50
56 57 64 58 79 65 70 61
41 29 36 38 81 80 68 58
32 32 35 36 78 55 67 60
30 35 34 26 46 38 37 38
39 39 31 27 39 35 34 37
42 43 31 25 32 30 30 32
37 40 31 25 60 50 67 54
33 29 27 36 35 37 48 39
32 30 34 28 39 36 39 31
63 45 74 63 50 34 37 40
54 46 60 52 43 37 39 50
47 51 52 45 48 54 57 43
(a) Find the principal components based on the covariance matrix. Interpret
them if possible.
HKU STAT4602 (2024-25, Semester 2) 1
STAT4602 Multivariate Data Analysis Assignment 2
(b) How many principal components would you suggest to retain in
summarizing the total variability of the data? Give reasons, including
results of statistical tests if appropriate.
(c) Repeat (a) and (b) using the correlation matrix instead.
(d) Compare and comment on the two sets of results for covariance and
correlation matrices. Recommend a set of results and explain why.
3. Annual financial data are collected for bankrupt firms approximately 2 years
prior to their bankruptcy and for financially sound firms at about the same
time. The data on four variables, X1 = (cash flow) / (total debt), X2 = (net
income) / (total assets), X3 = (current assets) / (current liabilities) and X4 =
(current assets) / (net sales) are stored in the file FINANICALDATA.TXT. In
addition, a categorical variable Y identifies whether a firm is bankrupt (Y = 1)
or non-bankrupt (Y = 2).
(a) Apply the linear discriminant analysis (LDA) to classify the firms into
a bankrupt group and a non-bankrupt group. Calculate the error rates
with cross-validation and report the results.
(b) Apply quadratic discriminant analysis (QDA) to classify the firms,
perform cross-validation and report the results.
4. The distances between pairs of five items are as follows:
Cluster the five items using the single linkage, complete linkage, and average
linkage hierarchical methods. Compare the results.
5. Consider multivariate linear regression with the following data structure:
individual Y1 Y2 · · · Yp X1 X2 · · · Xk
1 y11 y12 · · · y1p x11 x12 · · · x1k
2 y21 y22 · · · y2p x21 x22 x2k
n yn1 yn2 · · · ynp xn1 xn2 · · · xnk
The regression model is given as
Y
n×p
= Xn×k
B
k×p
+ Un×p
,
HKU STAT4602 (2024-25, Semester 2) 2
STAT4602 Multivariate Data Analysis Assignment 2
where the matrices Y , X, B and U are given as follows:
Here for i = 1, . . . , n, the vector of errors of observation i is εi =
(εj1, εj2, · · · , εjp)

, and we assume that ε1, . . . , εn
iid∼ Np(0, Σ).
(a) We know that the maximum likelihood estimator of B and Σ are:
Bˆ = (X′X)
−1 X′Y , Σˆ =
1
n


Uˆ , where Uˆ = Y − XBˆ .
Calculate the maximum value of the log-likelihood function
ℓ(B, Σ) = −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[(Y − XB)Σ
−1
(Y − XB)

]
= −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[Σ
−1
(Y − XB)

(Y − XB)].
(b) Plug in the definition of Bˆ and express Uˆ as a matrix calculated based
on X and Y . Calculate X⊤Uˆ and Uˆ

X.
(c) Prove the identity
(Y − XB)

(Y − XB)
= (Y − XBˆ )

(Y − XBˆ ) + (XBˆ − XB)

(XBˆ − XB).
Hint: by definition, Y − XBˆ = Uˆ , and we have
(Y − XB)

(Y − XB)
= (Y − XBˆ + XBˆ − XB)

(Y − XBˆ + XBˆ − XB).
6. Consider p random variables X1, . . . , Xp. Suppose that Y1, . . . , Yp are the first
to the p-th population principle components of X1, . . . , Xp.
(a) What are the population principle components of the random variables
Y1, . . . , Yp? Why?
(b) Suppose that the population covariance matrix of (X1, . . . , Xp)

is Σ and
its eigenvalue decomposition is
Σ =
p
X
i=1
λiαiα

i
,
where α1, . . . , αp are orthogonal unit vectors. What is the covariance
bewteen X1 and Y1?
7. Consider a k-class classification task with ni observations in class i, i =
1, . . . , k. Define matrices
H =
k
X
j=1
nj (x¯·j − x¯··)(x¯·j − x¯··)

, E =
k
X
j=1
nj
X
i=1
(xij − x¯·j )(xij − x¯·j )

, S =
n
E
− k
.
HKU STAT4602 (2024-25, Semester 2) 3
STAT4602 Multivariate Data Analysis Assignment 2
In LDA for multiclass classification, we consider the eigenvalue decompostion
E
−1Hai = ℓiai
, i = 1, . . . , s, s = rank(E
−1H).
where a1, . . . , as satisfy a

iSai = 1 and a

iSai
′ = 0 for all i, i′ = 1, . . . , s, i = i

.
(a) While the above definitions were introduced in the case of multiclass
classification (k > 2), we may check to what extent these definitions are
reasonable in binary classification (k = 2). In this case, we have the
sample means within class 1 and class 2 as x¯·1 and x¯·2 respectively. Can
you calculate the overall mean x¯·· based on x¯·1, x¯·2 and n1, n2?
(b) For k = 2, express H as a matrix calculated based on x¯·1, x¯·2 and n1, n2.
(c) What is the rank of the matrix H when k = 2?
(d) We mentioned in the lecture that we can simply use one Fisher
discriminant function for binary classification. Can we adopt the
definitions above to define more than one Fisher discriminant functions
for binary classification? Why?
HKU STAT4602 (2024-25, Semester 2) 4

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:代寫CS1010S、代做Python編程語言
  • 下一篇:STAT4602代寫、代做Java/Python編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美人妖在线观看| 激情久久中文字幕| 久久久99爱| 国产精品大片免费观看| 亚洲国产成人在线播放| 麻豆精品一区二区av白丝在线| 欧美sm极限捆绑bd| 国产精品亚洲欧美| 国产有码一区二区| 亚洲欧洲中文日韩久久av乱码| av成人福利| 欧美日韩午夜剧场| 1024成人| 国产视频观看一区| 国产一区二区电影在线观看| 在线日韩欧美视频| 日韩手机在线导航| 国内自拍亚洲| 免费久久99精品国产| 欧美日韩精品免费看| 免费在线欧美黄色| 欧美一区视频| 亚洲精品一区二区在线观看| 国产综合18久久久久久| 99亚洲伊人久久精品影院红桃| 亚洲国产欧美在线| 一区二区三区四区在线| 激情欧美一区二区三区在线观看| 中文在线资源观看网站视频免费不卡| 国产欧美韩日| 狠狠色狠狠色综合日日小说| 久久国产精品72免费观看| 米奇777在线欧美播放| 国产精品午夜在线| 欧美精品在线视频观看| 亚洲一区二区三区色| 精品va天堂亚洲国产| 欧美午夜理伦三级在线观看| 午夜综合激情| 国产视频在线观看一区| 国产一区深夜福利| 欧美xxxx在线观看| 久久午夜国产精品| 欧美福利视频网站| 亚洲欧美成人综合| 免费国产一区二区| 国产精品视频一区二区三区| 在线观看成人一级片| 国产亚洲精品成人av久久ww| 麻豆国产精品777777在线| 久久久成人精品| 乱人伦精品视频在线观看| 欧美日韩一区二区三区免费看| 亚洲黄一区二区| 在线中文字幕日韩| 欧美日韩在线看| 欧美一区二区精美| 久久免费一区| 亚洲制服欧美中文字幕中文字幕| 国产精品日本| 欧美精品国产一区| 一区二区欧美日韩| 欧美日韩亚洲系列| 宅男噜噜噜66国产日韩在线观看| 久久精品一本久久99精品| 午夜国产精品影院在线观看| 久久在线精品| 黄色一区二区在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美日韩国产一区二区| 免费一级欧美在线大片| 国产亚洲精品自拍| 亚洲精品国久久99热| 亚洲欧美日韩一区二区| 亚洲国产精品精华液2区45| 日韩一级欧洲| 欧美成人激情视频免费观看| 日韩视频免费观看| 欧美日韩1区2区3区| 在线免费高清一区二区三区| 国产农村妇女精品一区二区| 亚洲欧美日韩中文在线制服| 亚洲老板91色精品久久| 亚洲一区二区四区| 日韩一二三在线视频播| 亚洲高清不卡一区| 亚洲电影av| 国产精品va在线播放我和闺蜜| 国产欧美亚洲日本| 欧美+日本+国产+在线a∨观看| 国产精品美女久久久久av超清| 欧美极品在线播放| 一区二区视频在线观看| 国产午夜精品久久| 99亚洲伊人久久精品影院红桃| 亚洲最快最全在线视频| 亚洲你懂的在线视频| 欧美日韩国产专区| 国产精品久久久久毛片软件| 欧美www视频在线观看| 日韩视频一区二区三区在线播放| 欧美特黄一级| 久久嫩草精品久久久精品一| 欧美日韩国产一区二区三区地区| 美女视频黄免费的久久| 欧美日韩精品是欧美日韩精品| 欧美视频中文在线看| 欧美一级在线亚洲天堂| 国产精品美女一区二区| 欧美精品一区二| 精品不卡在线| 欧美日韩不卡在线| 狠狠狠色丁香婷婷综合激情| 麻豆精品在线播放| 国产精品扒开腿爽爽爽视频| 免费久久99精品国产自| 国产亚洲女人久久久久毛片| 国产伦理一区| 99精品欧美一区二区三区| 亚洲欧美变态国产另类| 欧美视频一区二区三区| 国产精品久久网| 亚洲高清视频在线| 亚洲高清不卡在线观看| 亚洲免费在线视频一区 二区| 欧美日韩三级电影在线| 99香蕉国产精品偷在线观看| 午夜免费久久久久| 久久亚洲影音av资源网| 亚洲午夜黄色| 国产日韩欧美在线一区| 欧美电影专区| 日韩亚洲精品在线| 亚洲黄色在线| 在线看片一区| 亚洲国产欧美一区二区三区丁香婷| 欧美日韩国产在线看| 国产精品伊人日日| 久热爱精品视频线路一| 韩国一区二区在线观看| 又紧又大又爽精品一区二区| 欧美日本乱大交xxxxx| 欧美精品导航| 亚洲一二三区在线观看| 欧美日韩极品在线观看一区| 一区二区在线不卡| 91久久久久久久久久久久久| 国产精品一二三四区| 久久久免费观看视频| 欧美欧美全黄| 国产精品私拍pans大尺度在线| 亚洲欧洲日本国产| 欧美三区免费完整视频在线观看| 一本在线高清不卡dvd| 国产精品免费观看在线| 久久久中精品2020中文| 99在线精品视频在线观看| 亚洲永久免费av| 国产精品狼人久久影院观看方式| 久久精品国产亚洲一区二区| 国产欧美一区二区在线观看| 国产精品天天摸av网| 欧美a级片网站| 欧美特黄一区|