日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫EE5434、代做c/c++,Java程序
代寫EE5434、代做c/c++,Java程序

時間:2024-12-06  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



EE5434 final project 
 
Data were available on Nov. 5 (see the Kaggle website) 
Report and source codes due: 11:59PM, Dec. 6th 
Full mark: 100 pts. 
 
During the process, you can keep trying new machine learning models and boost the learning 
accuracy. 
 
You are encouraged to form groups of size 2 with your classmates so that the team can 
implement multiple learning models and compare their performance. If you cannot find any 
partners, please send a message on the group discussion board and briefly introduce your 
expertise. If you prefer to do this project yourself, you can get 5 bonus points. 
 
Submission format: Report should be in PDF format. Source code should be in a notebook file 
(.ipynb) and also save your source code as a HTML file (.html). Thus, there are three files you 
need to upload to Canvas. Remember that you should not copy anyone’s codes, which can lead 
to faisure of this course. 
 
Files and naming rules: If you have two members in the team, start the file name with G2, 
otherwise, G1. For example, you have a teammate and the team members are: Jackie Lee and 
Xuantian Chan, name it as G2-Lee-Chan.xxx. 5 pts will be deducted if the naming rule is not 
followed. In your report, please clearly show the group members. 
 
How do we grade your report? We will consider the following factors. 
 
 1. You would get 30% (basic grade) if you correctly applied two learning models to our 
classification problem. The accuracy should be much better than random guess. Your 
report is written in generally correct English and is easy to follow. Your report should 
include clear explanation of your implementation details and basic analysis of the 
results. 
2. Factors in grading: 
a. Applied/implemented and compared at least 2 different models. You show good 
sense in choosing appropriate models (such as some NLP related models). 
b. For each model, clear explanation of the feature encoding methods, model 
structure, etc. Carefully tuned multiple sets of parameters or feature engineering 
methods. Provided evidence of multiple methods to boost the performance. 
c. Consider performance metrics beyond accuracy (such as confusion matrix, recall, 
ROC, etc.). Carefully compare the performance of different 
methods/models/parameter sets. Being able to present your results using the most 
insightful means such as tables/figures etc. 
d. Well-written reports that are easy to follow/read. 
e. Final ranking on Kaggle.  For each of the factor, we have unsatisfactory (1), acceptable (2), satisfactory (3), good (4), 
excellent (5). The sum of each factor will determine the grade. For example, student A got 4 
good and 1 acceptable for a to e. Then, A’s total score is 4*4+2=16. The full mark for a to e is 
25. So, A’s percentage is 64%. 
 
 
Note that if the final performance is very close (e.g. 0.65 vs 0.66), the corresponding 
submissions belong to the same group in the ranking. 
 
Factors that can increase your grade: 
1. You used a new learning model/feature engineering method that was not taught in 
class. This requires some reading and clear explanation why you think this model fits this 
problem. 
2. Your model’s performance is much better than others because of a new or optimized 
method. 
 
The format of the report 
1. There is no page limit for the report. If you don’t have much to report, keep it simple. 
Also, miminize the language issues by proofreading. 
2. To make our grading more standard, please use the following sections: 
a. Abstract. Summarize the report (what you done, what methods you use and the 
conclusions). (less than 300 words) 
b. Data properties (data explortary analysis). You should describe your 
understanding/analysis of the data properties. 
c. Methods/models. In this section, you should describe your implemented models. 
Provide key parameters. For example, what are the features? If you use kNN, 
what is k and how you computed the distance? If you use ANN, what is the 
architecture, etc. You should separate the high-level description of the models 
and the tuning of hyper-parameters. 
d. Experimental results. In this section, compare and summarize the results using 
appropriate tables/figures. Simplying copying screening is acceptable but will 
lead to low mark for sure. Instead, you should *summarize* your results. You 
can also compare the performance of your model under different 
hyperparameters. 
e. Conclusion and discussion. Discussion why your models perform well or poorly. 
f. Future work. Discuss what you could do if more time is given. 
3. For each model you tried, provide the codes of the model with the best performance. In 
your report, you can detail the performance of this model with different parameters. 
 
The code 
The code should include: 
1. Preprocessing of the data 2. Construction of the model 
3. Training 
4. Validation 
5. Testing 
6. And other code that is necessary 
 
This is the link that you need to use to join the competition. 
https://www.kaggle.com/t/7917***6956041b8acb64b6268afb4de 
 
 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:代寫ENGG1110、代做C++語言編程
  • 下一篇:COMP2010J代做、代寫c/c++,Python程序
  • ·MS3251代寫、代做Python/Java程序
  • ·COMP4134代做、Java程序語言代寫
  • ·代寫ENG4200、Python/Java程序設計代做
  • ·代寫I&C SCI 46 、c/c++,Java程序語言代做
  • ·CCIT4020代做、代寫c/c++,Java程序設計
  • ·代寫COMP2011J、Java程序設計代做
  • ·IS3240代做、代寫c/c++,Java程序語言
  • ·代寫CSE x25、C++/Java程序設計代做
  • ·代寫program、代做c++,Java程序語言
  • · 代寫MCEN30017、代做C++,Java程序
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久精品91久久香蕉加勒比| 国产乱肥老妇国产一区二| 国产一区二区欧美| 国产精品久久久久77777| 久久国产一区二区三区| 亚洲国产中文字幕在线观看| 国产一区二区电影在线观看| 国内精品久久久| 久久精品一本久久99精品| 亚洲黄色三级| 久久99伊人| 亚洲美女中出| 国产麻豆成人精品| 欧美日韩国产在线一区| 国产欧美韩日| 国产一区二区成人久久免费影院| 欧美精品一区视频| 国产精品夜夜夜| 国产精品久久久久aaaa| 蜜乳av另类精品一区二区| 欧美v国产在线一区二区三区| 欧美国产日韩一二三区| 亚洲精品视频啊美女在线直播| 99国产精品国产精品久久| 久久久福利视频| 久久午夜电影| 91久久综合| 国产一区二区中文字幕免费看| 久久亚洲欧美国产精品乐播| 久久久999国产| 亚洲国产视频直播| 亚洲欧美日韩国产成人精品影院| 免费亚洲电影在线观看| 亚洲欧美日本视频在线观看| 国产一区再线| 欧美亚洲在线| 国产一区久久久| 国产欧美韩国高清| 久久久99久久精品女同性| 亚洲欧美怡红院| 久久久伊人欧美| 国产精品久久网站| 99v久久综合狠狠综合久久| 欧美香蕉大胸在线视频观看| 免费在线看一区| 性色一区二区三区| 激情综合在线| 亚洲美女av黄| 美女脱光内衣内裤视频久久影院| 久久久久久91香蕉国产| 久久久久国产精品午夜一区| 亚洲欧美一区二区三区在线| 欧美高潮视频| 国产精品在线看| 国产精品久久久久久久久久妞妞| 亚洲精品视频在线观看网站| 国产精品一香蕉国产线看观看| 欧美视频在线观看一区| 先锋影音国产精品| 国产在线国偷精品产拍免费yy| 国产精品v一区二区三区| 国产欧美精品日韩区二区麻豆天美| 国产精品视频不卡| 亚洲日本中文字幕免费在线不卡| 国产精品久久影院| 欧美日韩高清在线一区| 亚洲电影在线| 亚洲午夜精品久久| 亚洲欧美精品| 亚洲黄色精品| 性高湖久久久久久久久| 国产色综合天天综合网| 亚洲综合久久久久| 欧美日韩精品久久| 国产精品亚洲综合一区在线观看| 国内精品99| 国产在线精品一区二区中文| 在线亚洲成人| 黄色成人在线观看| 欧美激情一级片一区二区| 亚洲午夜精品一区二区| 欧美国产精品va在线观看| 亚洲三级电影全部在线观看高清| 亚洲性色视频| 韩国三级在线一区| 亚洲欧美精品伊人久久| 欧美日本亚洲韩国国产| 久久久久久久尹人综合网亚洲| 欧美三日本三级三级在线播放| 国产日韩一区欧美| 免费91麻豆精品国产自产在线观看| 久久久精品欧美丰满| 欧美国产日本高清在线| 国产自产女人91一区在线观看| 久久男人资源视频| 欧美午夜不卡视频| 欧美成人免费网站| 亚洲美女在线国产| 欧美一区二区三区免费大片| 久久精品国产亚洲5555| 国产精品草莓在线免费观看| 亚洲电影在线播放| 久久久久久久国产| 久久偷窥视频| 日韩一本二本av| 亚洲一区二区三区中文字幕在线| 免费亚洲视频| 激情婷婷亚洲| 激情六月婷婷久久| 午夜精品视频在线观看一区二区| 99re8这里有精品热视频免费| 亚洲国产精品成人综合| 国产欧美 在线欧美| 99精品免费| 亚洲在线观看| 亚洲午夜精品久久久久久app| 亚洲欧美日韩精品久久久| 国产精品久久久久久久第一福利| 欧美午夜视频网站| 欧美视频在线一区| 在线亚洲免费| 国产精品久线观看视频| 欧美激情一区二区三区在线视频观看| 欧美日韩一区二区欧美激情| 激情综合中文娱乐网| 亚洲欧洲久久| 欧美日韩国内自拍| 亚洲一区二区在线观看视频| 中文在线资源观看视频网站免费不卡| 国产精品视频一区二区三区| 国产精品一区在线观看你懂的| 国模 一区 二区 三区| 99精品视频免费全部在线| 久久综合狠狠综合久久激情| 久久久久久久激情视频| 欧美在线播放视频| 午夜精品久久久久99热蜜桃导演| 在线观看欧美亚洲| 亚洲人成亚洲人成在线观看图片| 国产精品豆花视频| 亚洲毛片在线观看| 久久久久久亚洲精品不卡4k岛国| 亚洲欧美日韩国产一区二区| 亚洲特级毛片| 欧美日韩1区2区3区| 亚洲一级网站| 99成人在线| 欧美性一区二区| 久久婷婷丁香| 国产在线乱码一区二区三区| 国内外成人免费激情在线视频| 午夜免费久久久久| 国产在线观看精品一区二区三区| 亚洲综合久久久久| 国产精品入口夜色视频大尺度| 国产一区 二区 三区一级| 亚洲第一精品在线| 欧美成年人网站| 亚洲国产成人在线播放| 亚洲在线成人| 久久久久久尹人网香蕉| 国产精品自在欧美一区| 欧美怡红院视频一区二区三区| 国产精品久久久久国产a级|