日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫ENG4200、Python/Java程序設計代做
代寫ENG4200、Python/Java程序設計代做

時間:2024-11-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework 2: Neural networks 
ENG4200 Introduction to Artificial Intelligence and Machine Learning 4 
1. Key Information 
• Worth 30% of overall grade 
• Submission 1 (/2): Report submission 
• Deadline uploaded on Moodle 
• Submission 2 (/2): Code submission to CodeGrade 
• Deadline uploaded on Moodle (the same as for report) 
2. Training data 
The training dataset has been generated by maximum flow analysis between nodes 12 and 2. The 
feature dataset has 19 fields, which of each represents the maximum flow capacity of each of the 
19 edges, taking the values of 0, 1, and 2. The output dataset has 20 fields, where the first 19 
fields refer to the actual flow taking place on each of the 19 edges, and the last one refers to the 
maximum flow possible between nodes 12 and 2. 
 
Figure 1 The network used to generate training dataset. This information is just to help you understand the training 
dataset; you must not generate additional training dataset to train your neural network. 
 3. What you will do 
You have to create and train a neural network with the following requirement/note: 
• Only the provided training dataset should be used, i.e. furthur traning dataset must NOT be 
created by performing maximum flow analysis over the network in Figure 1. 
• The accuracy on a hidden test dataset will be evaluated by a customised function as 
follows, where the accuracy on the maximum flow field is weighted by 50%, and other 19 
fields share the rest 50% (you may design your loss function accordingly): 
 
 
 You should prepare two submissions, code submission and report submission. In blue colour are 
assessment criteria. 
• Code submission should include two files (example code uploaded on Moodle): 
o A .py file with two functions 
▪ demo_train demonstrates the training process for a few epochs. It has three 
inputs: (1) the file name of taining feature data (.csv), (2) the file name of 
training output data (.csv), and (3) the number of epochs. It needs to do two 
things: (1) it needs to print out a graph with two curves of training and 
validation accuracy, respectively; and (2) save the model as .keras file. 
▪ predict_in_df makes predictions on a provided feature data. It has two 
inputs: (1) the file name of a trained NN model (.keras) and (2) the file name 
of the feature data (.csv). It needs to return the predictions by the NN model 
as a dataframe that has the same format as ‘train_Y’. 
o A .keras file of your trained model 
▪ This will be used to test the hidden test dataset on CodeGrade. 
 
o You can test your files on CodeGrade. There is no limit in the number of 
submissions on CodeGrade until the deadline. 
 
o Assessment criteria 
▪ 5% for the code running properly addressing all requirements. 
▪ 10% for a third of the highest accuracy, 7% (out of 10%) for a third of the 
second highest accuracy, and 5% (out of 10%) for the rest. 
 
• Report submission should be at maximum 2 pages on the following three questions and 
one optional question: 
o Parametric studies of hyperparameters (e.g. structure, activators, optimiser, learning 
rate, etc.): how did you test different values, what insights have you obtained, and 
how did you decide the final setting of your model? 
o How did you address overfitting and imbalanced datasets? 
o How did you decide your loss function? 
o [Optional] Any other aspects you’d like to highlight (e.g. using advanced methods 
such as graphical neural network and/or transformer)? 
 
o [Formatting] Neither cover page nor content list is required. Use a plain word 
document with your name and student ID in the first line. 
 
o Assessment criteria 
▪ 5% for each of the questions, evaluated by technical quality AND 
writing/presentation 
▪ Any brave attempts of methods (e.g. Graphical Neural Network, Transformer, 
or Physics-Informed Neural Network using physical relationships e.g. that 
the flows going in and out of a node should be balanced) that go beyond 
what we learned in classroom will earn not only the top marks for report, but 
also (unless the accuracy is terribly off) will earn a full 10% mark for 
accuracy in the code submission part. If you have made such attempts, don’t 
forget to highlight your efforts on the report. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:CS1026A代做、Python設計程序代寫
  • 下一篇:代寫ECE 36800、代做Java/Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲精品美女久久久久| 亚洲成在人线av| 国产精品一区毛片| 亚洲一区二区在线视频| 欧美在线网站| 欧美精品成人| 国内自拍一区| 欧美黑人在线播放| 国产麻豆精品在线观看| 正在播放亚洲一区| 欧美一级理论性理论a| 国产精品黄视频| 久久人人精品| 久久aⅴ国产欧美74aaa| 欧美影片第一页| 欧美一级在线亚洲天堂| 国产午夜亚洲精品理论片色戒| 亚洲视频你懂的| 欧美日韩免费一区二区三区视频| 亚洲一区在线观看免费观看电影高清| 亚洲美女少妇无套啪啪呻吟| 欧美激情一级片一区二区| 国产精品久久97| 一本色道久久综合狠狠躁篇怎么玩| 免费在线观看日韩欧美| 亚洲综合激情| 国产精品一卡| 最新日韩在线| 欧美激情一区二区三区蜜桃视频| 国产欧美在线播放| 欧美午夜不卡影院在线观看完整版免费| 久久精品一区四区| 欧美高清视频| 亚洲电影免费观看高清完整版在线观看| 欧美亚洲成人精品| 久久久www| 久久综合影音| 国产精品黄视频| 亚洲欧美精品在线观看| 亚洲国产成人精品女人久久久| 极品少妇一区二区三区精品视频| 性色av一区二区三区在线观看| 亚洲字幕在线观看| 麻豆精品视频在线| 国产精品黄视频| 激情欧美日韩一区| aa国产精品| 欧美精品少妇一区二区三区| 国产精品av久久久久久麻豆网| 另类综合日韩欧美亚洲| 亚洲免费一在线| 亚洲少妇最新在线视频| 欧美福利视频| 国产欧美在线观看一区| 亚洲另类自拍| 亚洲综合电影一区二区三区| 欧美影院视频| 影音先锋中文字幕一区二区| 亚洲美女av黄| 久久久久久欧美| 欧美一区二区三区在线| 亚洲日本中文字幕| 国产主播精品在线| 国产精品毛片大码女人| 欧美午夜a级限制福利片| 亚洲美女中出| 99国产麻豆精品| 欧美黄色免费| 亚洲开发第一视频在线播放| 欧美黄色片免费观看| 国产欧美亚洲精品| 99国产精品久久久| 免费不卡在线视频| 国产精品毛片高清在线完整版| 国产日韩欧美亚洲| 午夜欧美大尺度福利影院在线看| 黄页网站一区| 欧美一级在线播放| 亚洲另类在线一区| 欧美日韩黄视频| 久久国产免费| 一本一道久久综合狠狠老精东影业| 欧美日韩精品系列| 亚洲一区二区三区乱码aⅴ蜜桃女| 欧美一二三区精品| 久久精品亚洲热| 久久99伊人| 欧美国产日本在线| 欧美另类在线播放| 亚洲福利视频免费观看| 欧美中文字幕久久| 亚洲精美视频| 欧美日韩国产大片| 国产亚洲永久域名| 欧美凹凸一区二区三区视频| 国产一区二区在线观看免费| 欧美亚洲视频| 欧美香蕉视频| 欧美日韩亚洲精品内裤| 欧美亚洲第一区| 一本色道久久88亚洲综合88| 久久综合久久美利坚合众国| 欧美一级在线播放| 欧美激情一区二区三区不卡| 欧美性大战xxxxx久久久| 一本到12不卡视频在线dvd| 欧美在线综合视频| 亚洲一区二区影院| 99国产精品久久久久久久成人热| 一区视频在线| 国语自产精品视频在线看| 亚洲黄色免费| 国产乱人伦精品一区二区| 欧美国产综合视频| 欧美日韩成人在线观看| 99香蕉国产精品偷在线观看| 国产日产欧产精品推荐色| 欧美激情视频在线播放| 欧美日本视频在线| 99亚洲视频| 欧美成va人片在线观看| 国产婷婷色一区二区三区四区| 国产女精品视频网站免费| 在线日韩av| 欧美1区2区视频| 亚洲欧洲另类国产综合| 亚洲欧美日韩视频一区| 国产偷国产偷亚洲高清97cao| 欧美一级视频精品观看| 在线播放中文字幕一区| 久久精品理论片| 国产精品激情偷乱一区二区∴| 欧美日韩国产限制| 狠色狠色综合久久| 麻豆乱码国产一区二区三区| 亚洲曰本av电影| 一本色道久久综合狠狠躁篇怎么玩| 欧美14一18处毛片| 国产精品国产三级国产普通话蜜臀| 久久一区二区精品| 欧美视频在线观看免费网址| 日韩视频一区二区三区在线播放免费观看| 久久综合影音| 国产主播精品| 欧美一区二区三区喷汁尤物| 欧美色道久久88综合亚洲精品| 欧美性色aⅴ视频一区日韩精品| 久久国产毛片| 一区二区黄色| 欧美极品在线视频| 美日韩精品免费| 亚洲欧洲综合另类| 久久亚洲欧美国产精品乐播| 亚洲精品欧美一区二区三区| 在线成人黄色| 国产亚洲欧美另类一区二区三区| 亚洲第一中文字幕| 欧美午夜一区二区三区免费大片| 国产日韩精品电影| 黄色一区二区三区| 欧美理论电影网| 亚洲激情偷拍| 中日韩美女免费视频网址在线观看| 久久久久久亚洲综合影院红桃|