日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫ENG4200、Python/Java程序設計代做
代寫ENG4200、Python/Java程序設計代做

時間:2024-11-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework 2: Neural networks 
ENG4200 Introduction to Artificial Intelligence and Machine Learning 4 
1. Key Information 
• Worth 30% of overall grade 
• Submission 1 (/2): Report submission 
• Deadline uploaded on Moodle 
• Submission 2 (/2): Code submission to CodeGrade 
• Deadline uploaded on Moodle (the same as for report) 
2. Training data 
The training dataset has been generated by maximum flow analysis between nodes 12 and 2. The 
feature dataset has 19 fields, which of each represents the maximum flow capacity of each of the 
19 edges, taking the values of 0, 1, and 2. The output dataset has 20 fields, where the first 19 
fields refer to the actual flow taking place on each of the 19 edges, and the last one refers to the 
maximum flow possible between nodes 12 and 2. 
 
Figure 1 The network used to generate training dataset. This information is just to help you understand the training 
dataset; you must not generate additional training dataset to train your neural network. 
 3. What you will do 
You have to create and train a neural network with the following requirement/note: 
• Only the provided training dataset should be used, i.e. furthur traning dataset must NOT be 
created by performing maximum flow analysis over the network in Figure 1. 
• The accuracy on a hidden test dataset will be evaluated by a customised function as 
follows, where the accuracy on the maximum flow field is weighted by 50%, and other 19 
fields share the rest 50% (you may design your loss function accordingly): 
 
 
 You should prepare two submissions, code submission and report submission. In blue colour are 
assessment criteria. 
• Code submission should include two files (example code uploaded on Moodle): 
o A .py file with two functions 
▪ demo_train demonstrates the training process for a few epochs. It has three 
inputs: (1) the file name of taining feature data (.csv), (2) the file name of 
training output data (.csv), and (3) the number of epochs. It needs to do two 
things: (1) it needs to print out a graph with two curves of training and 
validation accuracy, respectively; and (2) save the model as .keras file. 
▪ predict_in_df makes predictions on a provided feature data. It has two 
inputs: (1) the file name of a trained NN model (.keras) and (2) the file name 
of the feature data (.csv). It needs to return the predictions by the NN model 
as a dataframe that has the same format as ‘train_Y’. 
o A .keras file of your trained model 
▪ This will be used to test the hidden test dataset on CodeGrade. 
 
o You can test your files on CodeGrade. There is no limit in the number of 
submissions on CodeGrade until the deadline. 
 
o Assessment criteria 
▪ 5% for the code running properly addressing all requirements. 
▪ 10% for a third of the highest accuracy, 7% (out of 10%) for a third of the 
second highest accuracy, and 5% (out of 10%) for the rest. 
 
• Report submission should be at maximum 2 pages on the following three questions and 
one optional question: 
o Parametric studies of hyperparameters (e.g. structure, activators, optimiser, learning 
rate, etc.): how did you test different values, what insights have you obtained, and 
how did you decide the final setting of your model? 
o How did you address overfitting and imbalanced datasets? 
o How did you decide your loss function? 
o [Optional] Any other aspects you’d like to highlight (e.g. using advanced methods 
such as graphical neural network and/or transformer)? 
 
o [Formatting] Neither cover page nor content list is required. Use a plain word 
document with your name and student ID in the first line. 
 
o Assessment criteria 
▪ 5% for each of the questions, evaluated by technical quality AND 
writing/presentation 
▪ Any brave attempts of methods (e.g. Graphical Neural Network, Transformer, 
or Physics-Informed Neural Network using physical relationships e.g. that 
the flows going in and out of a node should be balanced) that go beyond 
what we learned in classroom will earn not only the top marks for report, but 
also (unless the accuracy is terribly off) will earn a full 10% mark for 
accuracy in the code submission part. If you have made such attempts, don’t 
forget to highlight your efforts on the report. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:CS1026A代做、Python設計程序代寫
  • 下一篇:代寫ECE 36800、代做Java/Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美日韩免费视频| 欧美香蕉大胸在线视频观看| 欧美中日韩免费视频| 在线欧美一区| 欧美午夜寂寞影院| 欧美日韩大片| 国产丝袜美腿一区二区三区| 一区二区高清在线观看| 欧美精品导航| 国产精品二区在线| 在线视频日韩| 欧美激情在线播放| 欧美日韩国产精品| 亚洲国产精品黑人久久久| 国产精品黄色在线观看| 欧美成人综合一区| 日韩一二三区视频| 裸体一区二区| 亚洲第一免费播放区| 99re这里只有精品6| 亚洲一级影院| 久久久久久久久久久久久女国产乱| 亚洲精品一区二区三区蜜桃久| 一本色道久久综合精品竹菊| 狼狼综合久久久久综合网| 亚洲高清在线播放| 国产女人18毛片水18精品| 欧美激情一区二区三区成人| 美玉足脚交一区二区三区图片| 欧美在线地址| 亚洲国产一区二区视频| 亚洲无亚洲人成网站77777| 亚洲欧美另类综合偷拍| 久久综合狠狠综合久久综合88| 亚洲日本欧美日韩高观看| 在线视频欧美精品| 国产日韩欧美日韩大片| 欧美日本亚洲韩国国产| 午夜国产精品视频免费体验区| 日韩天堂在线视频| 国产精品盗摄久久久| 欧美国产日韩一二三区| 国产精品网红福利| 欧美日韩一二三区| 欧美吻胸吃奶大尺度电影| 这里是久久伊人| 日韩特黄影片| 欧美激情四色| 在线观看不卡| 一区二区在线视频观看| 久久久www成人免费无遮挡大片| 国产欧美日韩视频| 久久精品二区| 国内精品久久久久影院薰衣草| 极品尤物av久久免费看| 国产偷自视频区视频一区二区| 亚洲女人小视频在线观看| 国产一级揄自揄精品视频| 亚洲欧美激情在线视频| 久久大综合网| 久久国产精品一区二区三区| 亚洲老司机av| 亚洲欧美日韩国产成人| 久久激情五月丁香伊人| 午夜精品久久久久久久99黑人| 亚洲免费在线观看视频| 老牛嫩草一区二区三区日本| 欧美日韩久久精品| 亚洲国产精品久久久久婷婷884| 激情综合网激情| 99在线视频精品| 欧美日韩一区二区欧美激情| 裸体丰满少妇做受久久99精品| 国产精品网站视频| 欧美日韩久久久久久| 在线免费观看欧美| 日韩视频免费在线观看| 国产一区二区三区最好精华液| 欧美日韩精品一区二区在线播放| 国产精品一区二区久久国产| 亚洲高清在线播放| 欧美一区日韩一区| 久久嫩草精品久久久精品一| 国内精品久久久久影院 日本资源| 国模精品娜娜一二三区| 亚洲欧美另类久久久精品2019| 亚洲精品123区| 亚洲欧洲午夜| 国产伦精品免费视频| 欧美日韩视频在线一区二区观看视频| 亚洲裸体视频| 亚洲黄色大片| 国外视频精品毛片| 久久国产精品99国产| 国产主播一区二区| 91久久精品一区| 国产精品sss| 最近中文字幕mv在线一区二区三区四区| 欧美日本精品一区二区三区| 亚洲午夜影视影院在线观看| 国产亚洲激情在线| 欧美日韩1234| 久久精品国产第一区二区三区最新章节| 亚洲在线视频观看| 欧美一级二级三级蜜桃| 一片黄亚洲嫩模| 国产午夜精品理论片a级探花| 一区三区视频| 欧美夜福利tv在线| 国产精品久久久久久亚洲调教| 国产精品视频内| 亚洲色无码播放| 麻豆精品视频在线观看| 亚洲欧美日韩国产综合精品二区| 国产精品久久久一区二区三区| 欧美日韩国产首页在线观看| 国内精品嫩模av私拍在线观看| 欧美午夜宅男影院| 国产在线精品成人一区二区三区| 国内激情久久| 久久男人av资源网站| 亚洲一区二区视频在线观看| 亚洲综合色婷婷| 亚洲图片在线| 极品少妇一区二区三区精品视频| 激情五月***国产精品| 国产精品在线看| 欧美高清在线一区| 欧美国产日韩a欧美在线观看| 国产亚洲在线| 国产一区二区三区四区| 欧美日韩午夜视频在线观看| 国产精品久久久久久久久久直播| 一区二区国产精品| 国产一区二区福利| 欧美高清在线一区二区| 国产欧美一区二区三区视频| 国产一区二区在线免费观看| 欧美精品福利| 国产精品在线看| 欧美日韩综合久久| 久久国产精品免费一区| 欧美成人精品三级在线观看| 亚洲夜晚福利在线观看| 国产毛片一区| 亚洲欧洲午夜| 亚洲激情婷婷| 99re视频这里只有精品| 91久久国产综合久久91精品网站| 国产精品午夜在线观看| 国产视频亚洲| 一本久道综合久久精品| 欧美精品久久久久久久免费观看| 亚洲一本大道在线| 最新成人av网站| 久久精品人人做人人爽| 亚洲午夜三级在线| 欧美国产欧美亚洲国产日韩mv天天看完整| 国产美女诱惑一区二区| 欧美精品电影在线| 国产精品草草| 亚洲黄色影院| 国产精品亚洲综合色区韩国| 一区二区三区 在线观看视|