日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MMME4056、代做MATLAB編程設計
代寫MMME4056、代做MATLAB編程設計

時間:2024-11-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



ESSENTIAL INFORMATION
MODULE CODE MODULE TITLE ASSESSMENT TYPE
MMME4056 Integrated Systems 
Analysis
Simulink and Report
COURSEWORK TITLE WEIGHT (INDICATIVE EFFORT)
MMME4056, ISA 2024, COURSEWORK 30% (Approx. 10-15
hrs)
SUBMISSION DATE SUBMISSION TIME SUBMISSION METHOD
15/11/2024 15:00 Moodle
FEEDBACK DETAILS
Feedback will be provided within 20 working days and will consist of an individual feedback 
form. Please note the marks released on Moodle are raw. If you have made a late submission 
and it is not covered by an EC or an accommodation then the deductions will be made when I 
submit the marks to the board after the exams. 
LEARNING OUTCOMES ASSESSED (IN BOLD)
1. Demonstrate an understanding of the concept of system behaviour and the design of 
experiments for characterising system components. - AHEP4: 2, 6 
2. Critically evaluate and analyse complex dynamic systems behaviour using an 
appropriate numerical or analytical methodology - AHEP4: 1, 2, 3, 6 
3. Evaluate the reliability of the separable system components, coupled system 
components and systems as a whole - AHEP4: 6, 9
SUBMISSION REQUIREMENTS
• This exercise constitutes 30% of the total course mark and is marked out of 100. 
Marks for individual sections are indicated for that section.
• Submit your coursework via MOODLE as a ZIP file. This ZIP-file should contain the 
coursework report itself (as a pdf document) and all files that you used in the CW. 
Please adopt the file-naming suggested in this coursework specification. More details 
about ‘WHAT TO SUBMIT’ can be found in the ASSESSMENT DETAILS.
• It must be possible to open the SIMULINK models submitted using MATLAB release 
R2023 or later. Models presented in different releases that cannot be opened will not
be marked. 
• Your report should not exceed 20 pages including the cover page, references, and 
appendixes.
• Your Coursework should have a front page which will have your name and student 
number.
• Text elements should be typed. Ideally in Arial 11 point.
• Drawings and figures must be made by computer. Drawings and figures may not be 
copied from the internet. In ALL cases they should be appropriately titled and 
captioned. The titles and captions should be clear and legible. 
• You may not discuss the details of your answers with other students. Software checks 
will be made to ensure no copying or plagiarism has occurred.
• Whenever you talk about someone else’s work (including journal papers, books, 
conference papers, technical reports, theses/dissertations, websites, etc.) if necessary,
you must include a reference to the original source of this information. You should use 
the IEEE referencing style for your report. 
MMME4056... Integrated Systems Analysis
COURSEWORK 
SYSTEM DESCRIPTION.
Figure 1 shows a floating wind turbine of spar-buoy type. These floating 
supports for wind turbines achieve stability by having a centre of mass 
below the centre of buoyancy (i.e. the centre of gravity of the displaced 
water).
Spar-buoy floating arrangements are considered by some to be suitable for 
very deep water. They are relatively compliant in “pitch”. That is to say, 
when the wind blows and exerts a downwind thrust force on the rotor of 
the wind turbine, the entire structure rocks backwards a little bit. As the 
structure is moving backwards relative to the oncoming wind, the relative 
wind speed reduces and so a coupling arises between the thrust force, F(t), 
acting on the turbine and the angle of tilt, (t), of the platform. This 
coursework is based on modelling the dynamics of such a floating wind 
turbine platform and applying the methods taught within MMME4056.
The downwind thrust on a wind turbine rotor is not a simple function of 
the wind speed, v(t). Every modern wind turbine has a particular fixed 
rated wind speed vrated. For wind speeds lower than the rated wind speed 
(v(t) < vrated), the turbine controller tries to extract the maximum available 
power from the air and this results in a downwind thrust that is 
proportional to the square of the wind speed, 𝐹(w**5;) = 𝑎 × w**7;(w**5;)
2
. By 
contrast, for wind speeds higher than the rated wind speed (v(t) > vrated), 
the turbine is not able to absorb all of the power available and the 
controller must deliberately spill some power by pitching the blades 
suitably. This results in a different downwind force relationship …
𝐹(w**5;) = 𝑎 × w**7;w**3;𝑎w**5;Ү**;𝑑
3⁄w**7;(w**5;). Figure 2 below shows a typical relationship 
between wind speed and the downwind thrust force acting on a wind turbine. 

q
Fig. 1: A Spar-buoy floating 
 wind turbine support
F
H
Fig. 2: Downwind thrust vs. (relative) wind speed.
vrated
Vcut-out
Wind speed, v →
Downwind thrust, F

OVERALL REQUIREMENTS
The requirement of this coursework is to understand this floating wind turbine as a simple dynamic system, to 
simulate its behaviour as wind-speed changes using SIMULINK and to analyse its behaviour at two different 
equilibrium states using methods taught in the course. 
The submission should be based on what is explicitly asked for in this coursework specification. The primary 
material being marked is a report – although you are asked to submit your SIMULINK models also. It must be 
possible to open the SIMULINK models submitted using the version of MATLAB presently installed on 
University computers. Models prepared in more modern releases will not be marked. 
There are no additional marks for long reports!
FILES PROVIDED TO YOU – AND WHAT THEY DO.
CW_Spec.docx : This file. It contains the coursework specification.
f_diesel.m : A MATLAB function not directly related to this coursework but supplied to help illustrate 
how a SIMULINK model can call a MATLAB function.
f_thrust.m : An MATLAB function that is not complete. You should complete this function by 
modifying each line of code carrying the comment % Modify this line
In some cases, the modification simply involves you inserting the appropriate 
numerical values. In the remaining cases, you should insert the correct formula.
sim_diesel.slx : A SIMULINK model calling the function f_diesel.m. 
As well as showing how to call an Interpreted MATLAB Function in SIMULINK,
this also shows how to transfer data into the MATLAB workspace so that you can 
obtain plots using MATLAB directly.
stud_data.xls : An EXCEL spreadsheet containing one unique row of data for each student. 
Each row contains (in this order) … {vrated, a, J, k, c, H, p, q…}
start_here.m : A MATLAB script. This opens up a SIMULINK model of the diesel engine only, 
(<sim_diesel.slx>) and then runs the model and plots both  and &#***3; vs. time. You might
choose to copy and then modify this so as to use it as a way to open and run your own
SIMULINK model. You can run <start_here.m> either by clicking the big green 
arrowhead in the top toolbar of the editor or else by just typing >>start_here 
at the MATLAB command prompt).
WHAT TO SUBMIT
Submit your coursework via MOODLE as a ZIP file. This ZIP-file should contain the coursework report itself (as a 
WORD or PDF document) and all files that you used in the CW. 
IMPORTANT: Please make clear on the first page of the report which student you are by identifying which 
Student ID# (SID# in the spreadsheet) applies to you (a number less than 401). If, for some reason, you do not find 
your name in the spreadsheet, please contact the academic in charge of this coursework to get one. For the 
purposes of your report, please refer to this number as the “SID_No”. (Student Identification number) on your 
report clearly.
 Marks will be deducted if you do not show this information clearly on page 1.
The coursework report should comprise:
• A response to Task 1 (the Table and, at most, 2 further sentences)
• A response to Task 2 (the corrected function, <f_thrust.m>, and four numerical answers)
• A response to Task 3 (maximum 2 pages). This should include an explanation of how you 
applied an algebraic or iterative approach to finding the two equilibrium conditions and a 
description of each equilibrium condition comprising {𝐹9.5,𝜙9.5, w**2;9.5} and {𝐹14,𝜙14, w**2;14}. 
• A response to Task 4 which should comprise
- a legible view of the SIMULINK model (on a single page)
- an explanation in text of how you have applied the initial conditions
- the plot of q(t) vs. t.
• A response to Task 5 (1 page) comprising the SIMULINK Model and a plot of q(t) vs. t.
• A response to Task 6 (<2 pages) containing an explanation of how you determined the state-space 
representation for one condition (you need not repeat this explanation) and how you used the state-space 
representation to determine how q(t) varies with respect to time, t. Also a graph representing q(t) vs. t from 
each of the two calculations (Task 5 and Task 6).
• A response to Task 7 (<2 pages) containing the eigenvalues of the A matrix for the equilibrium condition at 
v(t)  14 and an interpretation of these. Also the graph of q(t) vs. t from the new SIMULINK model and a 
commentary on any connection between the eigenvalues and this graph. 
EQUATIONS DEFINING THE SYSTEM
The following equations define the behaviour of this system. In these equations, a dot above a quantity indicates 
differentiation with respect to time. The angle 𝜙 is measured in radians. 
(1) Define: w**8;(w**5;) ≔ w**7;(w**5;) − 𝐻 × 𝑐w**0;w**4;(𝜙) × 𝜙(w**5;)
(2) If w**8;(w**5;) > w**7;𝑐w**6;w**5;w**0;w**6;w**5;, 𝐹(w**5;) = (𝑎 × w**7;w**3;𝑎w**5;Ү**;𝑑
3⁄w**7;𝑐w**6;w**5;w**0;w**6;w**5;) ∗ exp (−5(w**8;(w**5;) − w**7;𝑐w**6;w**5;w**0;w**6;w**5;))
Otherwise if w**8;(w**5;) ≥ w**7;w**3;𝑎w**5;Ү**;𝑑, 𝐹(w**5;) = 𝑎 × w**7;w**3;𝑎w**5;Ү**;𝑑
3⁄w**8;(w**5;)
Otherwise w**8;(w**5;) < w**7;w**3;𝑎w**5;Ү**;𝑑 and 𝐹(w**5;) = 𝑎 × w**8;(w**5;)
2 × w**4;𝑖𝑔𝑛(w**8;(w**5;))
(3) 𝐽 × 𝜙(w**5;) + 𝑐 × 𝜙(w**5;) + 𝑘 × 𝜙(w**5;) = 𝐹(w**5;) × 𝐻 × 𝑐w**0;w**4;2
(𝜙)
(4) w**2; = 𝐻 × w**4;𝑖𝑛(𝜙)
THE COURSEWORK REQUIREMENT – 7 TASKS.
Task 1. Based on the equations supplied above, insert “Y” (for “yes”), “N” (for “no”) or “M” (for “maybe”) in 
each un-shaded box of the table below to identify the nature of each quantity that appears in the equations.
Quantity An Input ? A State 
Variable ?
A Rate 
Variable ?
An Output ? An Intermediate 
(Derived) Variable ?
A Parameter?

State whether there is any other state variable not mentioned in the table above. State also whether there is any 
other rate variable not mentioned in the table above. 
[10 marks]
Task 2. Correct the necessary lines of code present in the supplied function, <f_thrust.m> and present that 
function in your report. Then call that function directly from the MATLAB for four different wind speeds: 
{ 3m/s, 9.5m/s, 14m/s, 28m/s }. Report the results. 
HINT: To get the answer for 9.5m/s, type … f_thrust( 9.5) at the MATLAB command prompt. 
[10 marks]
Task 3. Without using SIMULINK, determine an equilibrium condition for the dynamic system at the wind 
speeds 9.5m/s and 14m/s. For each of these speeds, report the following steady values, 
𝐹9.5 = , 𝐹14 = 
𝜙9.5 = , 𝜙14 = 
w**2;9.5 = , w**2;14 = 
HINT: There is no “closed-form” solution here so you will have to apply an iterative approach of some sort. A 
manual iteration process is fine. You do not have to write any code to implement an iterative solution automatically 
or to use any built-in iterative methods within MATLAB. 
[15 marks]
Task 4. Now create a SIMULINK model of the system and run this model over a period of 500s with a constant 
wind-speed of 9.5m/s taking the initial conditions to be (0) = 0.15 rad and 𝜙(0) = 0. Plot q(t) vs. t . 
[25 marks]
Task 5. Modify the SIMULINK model from Task 4 so that the wind speed is now varying sinusoidally 
according to w**7;(w**5;) = 9.5 + 0.2𝑐w**0;w**4;(0.2w**5;). Change the initial conditions so that (0) =  determined from Task 3. 
Plot q(t) vs. t over 500s.
[10 marks]
Task 6. Create state-space representations of the system for each of the two different equilibrium conditions 
discovered in Task 3. In each case, treat v(t) as the only input and q(t) as the only output and report the matrices, 
{A, B, C, D} for both cases separately. For the case of v(t)  9.5 m/s, use these matrices to develop an alternative 
prediction for q(t) vs. t from Task 5. Create a plot containing two curves on the same graph representing q(t) vs. t. 
One of those curves should use the data from Task 5 and the second curve should use the data from Task 6.
[15 marks]
Task 7. Calculate the eigenvalues of the matrix A for the case v(t)  14 m/s and interpret what these 
eigenvalues tell you. Modify the SIMULINK model from Task 4 so that the input wind speed is now a steady 
14m/s. Set the initial conditions to be (0) = ( + ) and run this model for 500s. Once again, plot q(t) vs. t. 
Comment on any connections between what you see from the SIMULINK model output and what you found from 
the eigenvalues of matrix A. 
[15 marks]

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:LCSCI4207代做、Java/Python程序代寫
  • 下一篇:代寫CIS5200、代做Java/Python程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产人妖伪娘一区91| 久久国产精品99国产精| 久久精品久久99精品久久| 亚洲欧美国产毛片在线| 日韩网站在线看片你懂的| 国内精品久久久久影院 日本资源| 欧美夫妇交换俱乐部在线观看| 欧美日韩久久久久久| 国产精品外国| 又紧又大又爽精品一区二区| avtt综合网| 久久精品一区二区| 伊人久久综合97精品| 国产精品视频网址| 亚洲卡通欧美制服中文| 亚洲欧美日本国产有色| 亚洲欧洲一区二区三区在线观看| 欧美日韩一级大片网址| 国产精品永久入口久久久| 亚洲国产99| 久久噜噜噜精品国产亚洲综合| 欧美肉体xxxx裸体137大胆| 亚洲欧美日韩中文视频| 亚洲六月丁香色婷婷综合久久| 国产精品夜夜夜一区二区三区尤| 一本久道久久综合中文字幕| 欧美视频中文字幕| 欧美黄色一级视频| 国产亚洲欧洲997久久综合| 国际精品欧美精品| 欧美激情影音先锋| 国产精品一区在线观看| 亚洲精品一区在线| 欧美日韩一区二区三区免费看| 亚洲欧美国产高清va在线播| 国产精品久久97| 蜜臀av性久久久久蜜臀aⅴ四虎| 黑人巨大精品欧美黑白配亚洲| 亚洲美女在线一区| 亚洲欧美在线视频观看| 欧美揉bbbbb揉bbbbb| 欧美成人一区二免费视频软件| 影音先锋中文字幕一区二区| 亚洲精品综合在线| 亚洲亚洲精品在线观看| 国产精品亚洲第一区在线暖暖韩国| 激情欧美一区| 久久婷婷成人综合色| 极品日韩久久| 欧美日产一区二区三区在线观看| 亚洲电影在线看| 国产精品大片免费观看| 欧美伊人久久久久久午夜久久久久| 欧美日韩午夜视频在线观看| 亚洲乱码国产乱码精品精可以看| 亚洲一区二区在线免费观看视频| 欧美国产一区二区在线观看| 亚洲欧美中文在线视频| 一区二区三区在线观看视频| 亚洲激情成人在线| 精品动漫3d一区二区三区| 99在线精品免费视频九九视| 亚洲人成网站影音先锋播放| 亚洲一线二线三线久久久| 国产亚洲欧美日韩美女| 亚洲综合国产激情另类一区| 99精品视频免费观看视频| 亚洲综合视频网| 亚洲欧美日韩专区| 欧美全黄视频| 国产精品毛片在线| 欧美激情视频一区二区三区不卡| 亚洲精品一区二区三区婷婷月| 亚洲一区二区三区高清不卡| 在线观看成人av电影| 亚洲免费成人av电影| 老司机精品导航| 欧美日韩三区四区| 国产欧美日韩视频一区二区| 在线观看视频免费一区二区三区| 最新69国产成人精品视频免费| 欧美xart系列高清| 欧美日韩国产二区| 久热精品视频| 亚洲一区二区少妇| 国产精品入口福利| 亚洲自拍啪啪| 亚洲一区二区在线免费观看视频| 久久久99免费视频| 欧美成人蜜桃| 欧美国产日韩一二三区| 国产一区二区三区无遮挡| 久久精品99久久香蕉国产色戒| 欧美jizz19hd性欧美| 亚洲欧美精品| 欧美一区二区三区久久精品| 久久久综合激的五月天| 亚洲夜晚福利在线观看| 国产精品久久一级| 亚洲精品乱码视频| 欧美在线播放高清精品| 欧美成人午夜| 亚洲在线国产日韩欧美| 久久aⅴ国产欧美74aaa| 欧美特黄一区| 亚洲少妇一区| 激情av一区| 国产欧美精品| 国产精品豆花视频| 亚洲毛片网站| 国产精品综合| 欧美亚洲第一页| 久久久人成影片一区二区三区观看| 国产精品国产成人国产三级| 国产精品久久久久久久久久免费| 久久综合久久久久88| 欧美国产亚洲视频| 亚洲人成人一区二区在线观看| 亚洲欧美日韩另类精品一区二区三区| 国产日本欧美一区二区三区在线| 欧美激情精品久久久久久免费印度| 久久久综合网站| 欧美在线观看一区二区三区| 韩国一区二区三区美女美女秀| 欧美成人四级电影| 禁久久精品乱码| 亚洲精品日韩激情在线电影| 欧美一区二区三区在线播放| 亚洲欧美日韩在线| 一本大道久久a久久精品综合| 在线观看欧美精品| 国产日韩欧美在线视频观看| 国产人成一区二区三区影院| 在线观看日产精品| 国产亚洲欧美日韩一区二区| 亚洲美女av网站| 先锋影音国产精品| 黄色精品一区| 久久激情一区| 老巨人导航500精品| 欧美成人一区二免费视频软件| 另类av导航| 亚洲视频一区二区免费在线观看| 一区二区福利| 欧美精品麻豆| 一区二区三区四区蜜桃| 亚洲专区一区二区三区| 免费亚洲一区| 国产精品丝袜久久久久久app| 玖玖玖免费嫩草在线影院一区| 国产一区二区三区无遮挡| 欧美人与禽猛交乱配视频| 欧美阿v一级看视频| 中国日韩欧美久久久久久久久| 一本色道久久综合亚洲91| 在线观看一区二区精品视频| 国产精品网站视频| 欧美在线视频一区二区| 亚洲在线免费视频| 玖玖玖免费嫩草在线影院一区| 99国产精品99久久久久久| 国产精品免费一区二区三区观看| 亚洲欧洲一区二区三区在线观看| 9国产精品视频|