日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS373 COIN、代做Python設計程序

時間:2024-05-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DETECTION 
ASSIGNMENT
2024 Semester 1
1
Version 2.2Deadline: 3rd June 2024, 23:59pm
●In this assignment, you will write a Python code pipeline to automatically detect all the coins in the 
given images. This is an individual assignment, so every student has to submit this assignment! This 
assignment is worth 15 marks.
●We have provided you with 6 images for testing your pipeline (you can find the images in the 
‘Images/easy’ folder).
○Your pipeline should be able to detect all the coins in the image labelled with easy-level. This will 
reward you with up to 10 marks.
○For extension (up to 5 marks), try images labelled as hard-level images in the “Images/hard” folder.
○Write a short reflective report about your extension. (Using Latex/Word)
●To output the images shown on the slides for checking, you may use the following code:
fig, axs = pyplot.subplots(1, 1)
# replace image with your image that you want to output
axs.imshow(image, cmap='gray')
pyplot.axis('off')
pyplot.tight_layout()
pyplot.show()
2SUBMISSION
Please upload your submission as a zipped file of the assignment folder to the UoA 
Assignment Dropbox by following this link: 
https://canvas.auckland.ac.nz/courses/103807/assignments/3837**
●Don’t put any virtual environment (venv) folders into this zip file, it just adds to the size, and we 
will have our own testing environment.
●Your code for executing the main coin detection algorithm has to be located in the provided 
“CS3**_coin_detection.py” file!
●You can either put all of your code into that file, or use a modular structure with additional files 
(that, of course, have to be submitted in the zip file). However, we will only execute the 
“CS3**_coin_detection.py” file to see if your code works for the main component!
●The main component of the assignment (“CS3**_coin_detection.py”) must not use any non-built-in 
Python packages (e.g., PIL, OpenCV, NumPy, etc.) except for Matplotlib. Ensure your IDE hasn’t 
added any of these packages to your imports.
●For the extensions, please create a new Python source file called 
‘CS3**_coin_detection_extension.py’
; this will ensure your extension part doesn’t mix up with the 
main component of the assignment. Remember, your algorithm has to pass the main component 
first!
●Including a short PDF report about your extension.
●Important: Use a lab computer to test if your code works on Windows on a different machine 
(There are over 300 students, we cannot debug code for you if it doesn’t work!)
3easy_case_1 final output
easy_case_2 final output
easy_case_4 final output easy_case_6 final outputASSIGNMENT STEPS
5
1. Convert to greyscale and normalize
I. Convert to grey scale image: read input image using the ‘readRGBImageToSeparatePixelArrays()’ helper 
function. Convert the RGB image to greyscale (use RGB channel ratio 0.3 x red, 0.6 x green, 0.1 x blue), 
and round the pixel values to the nearest integer value.
II. Contrast Stretching: stretch the values between 0 to 255 (using the 5-95 percentile strategy) as described 
on lecture slides ImagesAndHistograms, p20-68). Do not round your 5% and 95% cumulative histogram 
values. Your output for this step should be the same as the image shown on Fig. 2.
Hint 1: see lecture slides ImagesAndHistograms and Coderunner Programming quiz in Week 10.
Hint 2: for our example image (Fig. 1), the 5_percentile (f_min) = 86 and the 95_percentile (f_max) = 1**.
Fig. 1: input Fig. 2: step 1 output
We will use this image 
(‘easy_case_1’) as an 
example on this slides2. Edge Detection
I. Apply a 3x3 Scharr filter in horizontal (x) and vertical (y) directions independently to get the edge maps (see 
Fig. 3 and Fig. 4), you should store the computed value for each individual pixel as Python float.
II. Take the absolute value of the sum between horizontal (x) and vertical (y) direction edge maps (see Hint 4). You 
do not need to round the numbers. The output for this step should be the same as the image shown on Fig. 5.
Hint 1: see lecture slides on edge detection and Coderunner Programming quiz in Week 11.
Hint 2: please use the 3x3 Scharr filter shown below for this assignment:
6
Hint 4: you should use the BorderIgnore option and set border 
pixels to zero in output, as stated on the slide Filtering, p13.
Hint 5: for computing the edge strength, you may use the 
following equation:
gm
(x, y) = |gx
(x, y)| + |gy
(x, y)|
Absolute grey level 
gradient on the 
horizontal direction
Absolute grey level 
gradient on the vertical 
direction
Edge map on 
horizontal and 
vertical
Fig. 5: Step 2 
output (gm
)
Fig. 4: Edge map 
(gy
) on vertical 
direction
Fig. 3: Edge map 
(gx
) on horizontal 
direction7
3. Image Blurring
Apply 5x5 mean filter(s) to image. Your output for this step should be the same as the image shown on 
Fig. 7.
Hint 1: do not round your output values.
Hint 2: after computing the mean filter for one 5x5 window, you should take the absolute value of your 
result before moving to the next window.
Hint 3: you should use the BorderIgnore option and set border pixels to zero in output, as stated on the 
slide Filtering, p13.
Hint 3: try applying the filter three times to the image sequentially.
Hint 4: see lecture slides on image filtering and Coderunner Programming quiz in Week 11.
Fig. 7: Step 3 output Fig. 6: Grayscale histogram for output from step 38
4. Threshold the Image
Perform a simple thresholding operation to segment the coin(s) from the black background. After 
performing this step, you should have a binary image (see Fig. 10).
Hint 1: 22 would be a reasonable value for thresholding for our example image, set any pixel value 
smaller than 22 to 0; this represents your background (region 1) in the image, and set any pixel value 
bigger or equal to 22 to 255; which represents your foreground (region 2) – the coin.
Hint 2: see lecture slides on image segmentation (p7) and see Programming quiz on Coderunner on 
Week 10.
Fig. 9: Step 3 output Fig. 10: Step 4 output Fig. 8: Grayscale histogram for output from step 39
5. Erosion and Dilation
Perform several dilation steps followed by several erosion steps. You may need to repeat the dilation 
and erosion steps multiple times. Your output for this step should be the same as the image shown on Fig. 
11.
Hint 1: use circular 5x5 kernel, see Fig. 12 for the kernel details.
Hint 2: the filtering process has to access pixels that are outside the input image. So, please use the 
BoundaryZeroPadding option, see lecture slides Filtering, p13.
Hint 2: try to perform dilation 3-4 times first, and then erosion 3-4 times. You may need to try a couple 
of times to get the desired output.
Hint 3: see lecture slides on image morphology and Coderunner Programming quiz in Week 12.
Fig. 11: Step 5 output
Fig. 12: Circular 5x5 kernel for 
dilation and erosion10
6. Connected Component Analysis
Perform a connected component analysis to find all connected components. Your output for this 
step should be the same as the image shown on Fig. 13.
After erosion and dilation, you may find there are still some holes in the binary image. That is 
fine, as long as it is one connected component.
Hint 1: see lecture slides on Segmentation_II, p4-6, and Coderunner Programming quiz in Week 
12.
Fig. 13: Step 6 outputWe will provide code for drawing the bounding box(es) 
in the image, so please store all the bounding box 
locations in a Python list called ‘bounding_box_list’, so 
our program can loop through all the bounding boxes 
and draw them on the output image.
Below is an example of the ‘bounding_box_list’ for our 
example image on the right.
11
7. Draw Bounding Box
Extract the bounding box(es) around all regions that your pipeline has found by looping over 
the image and looking for the minimum and maximum x and y coordinates of the pixels in the 
previously determined connected components. Your output for this step should be the same as 
the image shown on Fig. 14.
Make sure you record the bounding box locations for each of the connected components your 
pipeline has found.
Bounding_box_list=[[74, 68, 312, 303]]
A list of list
Bounding_box_min_x
Bounding_box_min_y Bounding_box_max_x
Bounding_box_max_y
Fig. 14: Step 7 outputInput
Drawing 
Bounding Box
Color to Gray Scale 
and Normalize
Edge 
Detection
Image 
Blurring Thresholding
Dilation and 
Erosion
Connected 
Component Analysis
12
Coin Detection Full Pipelineeasy_case_1 final output easy_case_2 final output
easy_case_4 final output easy_case_6 final outputEXTENSION
For this extension (worth 5 marks), you are expected to alter some parts of the pipeline.
●Using Laplacian filter for image edge detection
○Please use the Laplacian filter kernel on the right (see Fig. 15).
○You may need to change subsequent steps as well, if you decide to
use Laplacian filter.
●Output number of coins your pipeline has detected.
●Testing your pipeline on the hard-level images we provided.
○For some hard-level images, you may need to look at the size of the connected components to decide which 
component is the coin.
●Identify the type of coins (whether it is a **dollar coin, 50-cent coin, etc.). 
○Since different type of coins have different sizes, you may want to compute the area of the bounding box in 
the image to identify them.
●etc.
Submissions that make the most impressive contributions will get full marks. Please create a new 
Python source file called ‘CS3**_coin_detection_extension.py’ for your extension part, and include a 
short PDF report about your extension. Try to be creative!
14
Fig. 15: Laplacian filter kernel

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:INTE2401代寫、代做Java設計程序
  • 下一篇:CS 369代做、代寫Python編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产免费一区二区三区香蕉精| 激情欧美日韩| 亚洲精品永久免费精品| 一本色道久久综合精品竹菊| 亚洲美女免费精品视频在线观看| 日韩视频免费看| 一区二区三区视频观看| 欧美日韩一区二区三区在线| 性欧美办公室18xxxxhd| 亚洲精品欧美一区二区三区| 欧美麻豆久久久久久中文| 国产精品高潮呻吟视频| 国产精品一区二区黑丝| 99精品黄色片免费大全| 国产偷久久久精品专区| 国产综合色在线视频区| 亚洲免费视频在线观看| 久久国产精品久久w女人spa| 欧美性大战久久久久久久| 久久中文久久字幕| 国产欧美日韩免费看aⅴ视频| 欧美日韩精品一区二区三区四区| 欧美噜噜久久久xxx| 欧美日韩免费一区二区三区| 欧美视频在线免费| 亚洲图片欧美一区| 一区二区三区中文在线观看| 中国日韩欧美久久久久久久久| 欧美在线三级| 国产一区二区黄| 欧美日韩性生活视频| 先锋a资源在线看亚洲| 亚洲毛片av| 亚洲精品欧美日韩| 欧美专区一区二区三区| 国产专区一区| 久久一区二区三区国产精品| 亚洲一区影音先锋| 激情文学一区| 欧美午夜理伦三级在线观看| 国产视频一区三区| 国产精品女主播在线观看| 亚洲国产精品久久久久秋霞蜜臀| 91久久久一线二线三线品牌| 可以免费看不卡的av网站| 欧美一区二区三区免费看| 日韩视频免费看| 狠狠久久亚洲欧美专区| 欧美三级欧美一级| 亚洲欧洲一区二区三区在线观看| 亚洲国产小视频在线观看| 久久久噜噜噜久久| 国产伦精品一区二区三区视频黑人| 国产一区二区精品在线观看| 国产亚洲精品aa| 中国日韩欧美久久久久久久久| 欧美系列一区| 国产亚洲成人一区| 99精品视频免费观看| 日韩视频永久免费观看| 另类亚洲自拍| 99精品视频免费观看视频| 欧美影院一区| 国产伦精品一区二区三区照片91| 国产精品国产三级国产普通话三级| 欧美在线看片| 欧美日本亚洲视频| 欧美在线观看一二区| 一卡二卡3卡四卡高清精品视频| 一区二区三区久久精品| 国产精品视频xxxx| 午夜视频一区在线观看| 国产精品久久| 一本到高清视频免费精品| 国产一区二区三区四区| 亚洲美女一区| 亚洲欧美日韩国产综合精品二区| 午夜久久美女| 国产专区一区| 久久久久久久综合| 激情综合中文娱乐网| 美女精品在线观看| 免费欧美在线| 国内精品久久久久久久果冻传媒| 欧美性色视频在线| 欧美另类69精品久久久久9999| 亚洲国产天堂网精品网站| 欧美精品一区二区三区四区| 欧美粗暴jizz性欧美20| 欧美电影在线免费观看网站| 亚洲免费观看高清完整版在线观看| 一区免费在线| 久热爱精品视频线路一| 久久人体大胆视频| 美女性感视频久久久| 正在播放亚洲| 亚洲永久网站| 国产综合香蕉五月婷在线| 国产精品视频精品| 久久综合久久综合九色| 久久激情网站| 亚洲国产黄色| 性久久久久久| 欧美波霸影院| 亚洲欧美精品伊人久久| 国产精品美女www爽爽爽| 欧美一级在线视频| 欧美一区二区三区免费大片| 亚洲国产精品传媒在线观看| 国产日韩精品在线| 国产精品国产三级国产aⅴ浪潮| 欧美电影免费观看网站| 国产精品久99| 国产伦理一区| 欧美系列精品| 亚洲综合首页| 亚洲三级免费电影| 韩国v欧美v日本v亚洲v| 欧美日韩无遮挡| 亚洲视频在线观看| 亚洲无限av看| 久久婷婷人人澡人人喊人人爽| 久久综合伊人77777尤物| 欧美成人自拍| 亚洲精品乱码久久久久久久久| 国产欧美日韩一区二区三区在线观看| 美女日韩在线中文字幕| 欧美成人国产| 激情久久五月| 亚洲视频大全| 亚洲免费在线精品一区| 韩国女主播一区| 国户精品久久久久久久久久久不卡| 欧美大片在线观看一区| 午夜在线视频一区二区区别| 亚洲欧洲精品一区二区三区| 亚洲午夜一区二区| 亚洲视频1区| 99在线精品视频在线观看| 午夜一区二区三区不卡视频| 极品日韩久久| 欧美性淫爽ww久久久久无| 久久都是精品| 夜夜嗨av一区二区三区四季av| 亚洲欧美日韩成人| 欧美高潮视频| 黑人中文字幕一区二区三区| 欧美色精品在线视频| 亚洲欧美精品在线| 嫩模写真一区二区三区三州| 日韩视频在线观看| 欧美精品福利| 欧美午夜电影在线| 国产一区二区视频在线观看| 欧美精品日韩精品| 国产色爱av资源综合区| 欧美日韩国产在线| 亚洲一区二三| 国产日韩欧美在线| 久久人人九九| 极品尤物一区二区三区| 国产精品久久久一区麻豆最新章节| 在线观看亚洲视频| 国产精品入口夜色视频大尺度|