日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫5614. C++ PROGRAMMING

時間:2024-02-29  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Assignment 1: Linear classifiers

Due date: Thursday, February 15, 11:59:59 PM

 

In this assignment you will implement simple linear classifiers and run them on two different datasets:

1. Rice dataset: a simple categorical binary classification dataset. Please note that the

labels in the dataset are 0/1, as opposed to -1/1 as in the lectures, so you may have to change either the labels or the derivations of parameter update rules accordingly.

2. Fashion-MNIST: a multi-class image classification dataset

The goal of this assignment is to help you understand the fundamentals of a few classic methods and become familiar with scientific computing tools in Python. You will also get experience in hyperparameter tuning and using proper train/validation/test data splits.

Download the starting code here.

You will implement the following classifiers (in their respective files):

1. Logistic regression (logistic.py)

2. Perceptron (perceptr on.py)

3. SVM (svm.py)

4. Softmax (softmax.py)

For the logistic regression classifier, multi-class prediction is difficult, as it requires a one-vs-one or one-vs-rest classifier for every class. Therefore, you only need to use logistic regression on the Rice dataset.

The top-level notebook (CS 444 Assignment-1.ipynb) will guide you through all of the steps.

Setup instructions are below. The format of this assignment is inspired by the Stanford

CS231n assignments, and we have borrowed some of their data loading and instructions in our assignment IPython notebook.

None of the parts of this assignment require the use of a machine with a GPU. You may complete the assignment using your local machine or you may use Google Colaboratory.

Environment Setup (Local)

If you will be completing the assignment on a local machine then you will need a Python environment set up with the appropriate packages.

We suggest that you use Anaconda to manage Python package dependencies

(https://www.anaconda.com/download). This guide provides useful information on how to use Conda: https://conda.io/docs/user-guide/getting-started.html.

Data Setup (Local)

Once you have downloaded and opened the zip file, navigate to the fashion-mnist directory in assignment1 and execute the get_datasets script provided:

$ cd assignment1/fashion-mnist/

$ sh get_data.sh or $bash get_data.sh

The Rice dataset is small enough that we've included it in the zip file.

Data Setup (For Colaboratory)

If you are using Google Colaboratory for this assignment, all of the Python packages you need will already be installed. The only thing you need to do is download the datasets and make them available to your account.

Download the assignment zip file and follow the steps above to download Fashion-MNIST to your local machine. Next, you should make a folder in your Google Drive to holdall of   your assignment files and upload the entire assignment folder (including the datasets you downloaded) into this Google drive file.

You will now need to open the assignment 1 IPython notebook file from your Google Drive folder in Colaboratory and run a few setup commands. You can find a detailed tutorial on   these steps here (no need to worry about setting up GPU for now). However, we have

condensed all the important commands you need to run into an IPython notebook.

IPython

The assignment is given to you in the CS 444 Assignment-1.ipynb file. As mentioned, if you are   using Colaboratory, you can open the IPython notebook directly in Colaboratory. If you are using a local machine, ensure that IPython is installed (https://ipython.org/install.html). You may then navigate to the assignment directory in the terminal and start a local IPython server using the jupyter notebook command.

Submission Instructions

Submission of this assignment will involve three steps:

1. If you are working in a pair, only one designated student should make the submission to Canvas and Kaggle. You should indicate your Team Name on Kaggle Leaderboard   and team members in the report.

2. You must submit your output Kaggle CSV files from each model on the Fashion- MNIST dataset to their corresponding Kaggle competition webpages:

  Perceptron

  SVM

  Softmax

The baseline accuracies you should approximately reach are listed as benchmarks on each respective Kaggle leaderboard.

3. You must upload three files on Canvas:

1. All of your code (Python files and ipynb file) in a single ZIP file. The filename should benetid_mp1_code.zip. Do NOT include datasets in your zip file.

2. Your IPython notebook with output cells converted to PDF format. The filename should benetid_mp1_output.pdf.

3. A brief report in PDF format using this template. The filename should be netid_mp1_report.pdf.

Don'tforget to hit "Submit" after uploadingyour files,otherwise we will not receive your submission!

Please refer to course policies on academic honesty, collaboration, late submission, etc.
代寫 5614. C++ Programming-留學生作業幫 (daixie7.com)


請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫CS444 Linear classifiers
  • 下一篇:莆田鞋官方正品入口,這十個官方入口必須收藏
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        99热精品在线| 欧美三级欧美一级| 久久精品国产精品亚洲精品| 欧美视频在线观看一区二区| 香蕉成人啪国产精品视频综合网| 99re视频这里只有精品| 欧美视频在线免费看| 亚洲一区在线直播| 在线一区二区三区做爰视频网站| 国产精品亚洲欧美| 日韩视频在线一区二区| 亚洲视频一二三| 国产精品久久久久一区二区| 亚洲欧美精品在线观看| 国产精品久久一区二区三区| 亚洲欧美综合| 亚洲图片你懂的| 在线亚洲自拍| 国产精品一区一区三区| 一区二区欧美国产| 国产精品vvv| 久久国产精品久久久久久久久久| 亚洲精品国久久99热| 欧美日韩在线直播| 亚洲永久在线观看| 免费不卡欧美自拍视频| 国产女主播在线一区二区| 国产亚洲欧美中文| 国产精品久久久久久久久久免费看| 亚洲精品资源美女情侣酒店| 一区二区三区久久精品| 欧美一区二区啪啪| 黄色日韩在线| 久热爱精品视频线路一| 亚洲国产精品999| 亚洲欧美日韩综合一区| 国产亚洲欧美aaaa| 国产一区二区三区四区在线观看| 欧美日韩一区二区三区在线观看免| 欧美成人精品在线观看| 欧美日韩国产精品一区二区亚洲| 亚洲欧美日韩精品久久久| 国产一区二区三区日韩欧美| 韩国久久久久| aaa亚洲精品一二三区| 另类天堂视频在线观看| 国产精品男人爽免费视频1| 1024成人| 欧美人成网站| 午夜精品久久久久久久99樱桃| 影院欧美亚洲| 国产精品久久二区| 亚洲欧美国产一区二区三区| 亚洲欧美日韩中文在线制服| 欧美视频免费看| 久久精选视频| 欧美日韩另类字幕中文| 亚洲午夜精品国产| 欧美专区日韩专区| 欧美激情亚洲综合一区| av成人免费| 亚洲精品乱码视频| 久久久久国产精品午夜一区| 激情丁香综合| 欧美欧美天天天天操| 香港成人在线视频| 亚洲欧美日韩另类精品一区二区三区| 欧美精品一区二区精品网| 亚洲激情影视| 久久一二三国产| 一区二区三区毛片| 欧美成人dvd在线视频| 韩国自拍一区| 国产精品影片在线观看| 国产日产欧产精品推荐色| 一本色道久久综合亚洲二区三区| 欧美日韩a区| 亚洲欧美美女| 欧美日韩日日骚| 国产午夜精品视频| 午夜精品久久久久久久久久久| 亚洲色图在线视频| 亚洲片在线观看| 欧美精选午夜久久久乱码6080| 免费高清在线视频一区·| 在线播放国产一区中文字幕剧情欧美| 欧美日韩美女| 欧美一区二区观看视频| 久久精品一区二区国产| 黄色精品在线看| 亚洲欧美日本视频在线观看| 日韩午夜av| 亚洲欧美在线网| 欧美日韩一区二区三区高清| 欧美专区亚洲专区| 久热成人在线视频| 亚洲高清不卡在线| 亚洲日本中文| 国产午夜亚洲精品理论片色戒| 欧美精品不卡| 欧美不卡激情三级在线观看| 欧美日韩国产天堂| 欧美精品久久一区| 亚洲午夜国产成人av电影男同| 欧美日韩中国免费专区在线看| 国产精品v片在线观看不卡| 一区二区电影免费观看| 欧美手机在线视频| 狠狠色噜噜狠狠狠狠色吗综合| 亚洲欧洲在线一区| 亚洲美女中文字幕| 亚洲尤物视频在线| 欧美日韩综合在线| 久久精品一本久久99精品| 欧美日韩日本视频| 在线观看视频免费一区二区三区| 国产亚洲一级高清| 99热在线精品观看| 亚洲国内高清视频| 噜噜噜91成人网| 影音欧美亚洲| 久久久7777| 欧美日韩不卡| 免费黄网站欧美| 久久午夜精品一区二区| 亚洲电影在线| 亚洲一区二区三区乱码aⅴ蜜桃女| 国产精品一区久久| 国产精品都在这里| 亚洲激情视频在线观看| 亚洲国产中文字幕在线观看| 国产精品免费观看在线| 欧美h视频在线| 久久亚洲综合色一区二区三区| 91久久精品一区二区三区| 亚洲欧美日韩一区二区三区在线观看| 欧美性片在线观看| 亚洲欧美日韩一区二区三区在线| 久久躁狠狠躁夜夜爽| 国产专区综合网| 免费在线欧美黄色| 亚洲特级片在线| 国产精品免费久久久久久| 亚洲男人的天堂在线aⅴ视频| 亚洲激情女人| 亚洲永久精品国产| 欧美精品日韩综合在线| 久久精品国产v日韩v亚洲| 一区二区欧美视频| 欧美日韩国产色视频| 国产亚洲一区二区三区在线播放| 久久精品中文字幕一区二区三区| 亚洲电影av在线| 亚洲欧美三级伦理| 亚洲精品在线一区二区| 99视频在线精品国自产拍免费观看| 欧美69视频| 欧美区视频在线观看| 久久男人av资源网站| 亚洲欧美影院| 欧美亚洲不卡| 久久久噜噜噜久久狠狠50岁| 亚洲视频久久| 伊人久久综合97精品|