日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS444 Linear classifiers

時間:2024-02-29  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Assignment 1: Linear classifiers

Due date: Thursday, February 15, 11:59:59 PM

 

In this assignment you will implement simple linear classifiers and run them on two different datasets:

1. Rice dataset: a simple categorical binary classification dataset. Please note that the

labels in the dataset are 0/1, as opposed to -1/1 as in the lectures, so you may have to change either the labels or the derivations of parameter update rules accordingly.

2. Fashion-MNIST: a multi-class image classification dataset

The goal of this assignment is to help you understand the fundamentals of a few classic methods and become familiar with scientific computing tools in Python. You will also get experience in hyperparameter tuning and using proper train/validation/test data splits.

Download the starting code here.

You will implement the following classifiers (in their respective files):

1. Logistic regression (logistic.py)

2. Perceptron (perceptr on.py)

3. SVM (svm.py)

4. Softmax (softmax.py)

For the logistic regression classifier, multi-class prediction is difficult, as it requires a one-vs-one or one-vs-rest classifier for every class. Therefore, you only need to use logistic regression on the Rice dataset.

The top-level notebook (CS 444 Assignment-1.ipynb) will guide you through all of the steps.

Setup instructions are below. The format of this assignment is inspired by the Stanford

CS231n assignments, and we have borrowed some of their data loading and instructions in our assignment IPython notebook.

None of the parts of this assignment require the use of a machine with a GPU. You may complete the assignment using your local machine or you may use Google Colaboratory.

Environment Setup (Local)

If you will be completing the assignment on a local machine then you will need a Python environment set up with the appropriate packages.

We suggest that you use Anaconda to manage Python package dependencies

(https://www.anaconda.com/download). This guide provides useful information on how to use Conda: https://conda.io/docs/user-guide/getting-started.html.

Data Setup (Local)

Once you have downloaded and opened the zip file, navigate to the fashion-mnist directory in assignment1 and execute the get_datasets script provided:

$ cd assignment1/fashion-mnist/

$ sh get_data.sh or $bash get_data.sh

The Rice dataset is small enough that we've included it in the zip file.

Data Setup (For Colaboratory)

If you are using Google Colaboratory for this assignment, all of the Python packages you need will already be installed. The only thing you need to do is download the datasets and make them available to your account.

Download the assignment zip file and follow the steps above to download Fashion-MNIST to your local machine. Next, you should make a folder in your Google Drive to holdall of   your assignment files and upload the entire assignment folder (including the datasets you downloaded) into this Google drive file.

You will now need to open the assignment 1 IPython notebook file from your Google Drive folder in Colaboratory and run a few setup commands. You can find a detailed tutorial on   these steps here (no need to worry about setting up GPU for now). However, we have

condensed all the important commands you need to run into an IPython notebook.

IPython

The assignment is given to you in the CS 444 Assignment-1.ipynb file. As mentioned, if you are   using Colaboratory, you can open the IPython notebook directly in Colaboratory. If you are using a local machine, ensure that IPython is installed (https://ipython.org/install.html). You may then navigate to the assignment directory in the terminal and start a local IPython server using the jupyter notebook command.

Submission Instructions

Submission of this assignment will involve three steps:

1. If you are working in a pair, only one designated student should make the submission to Canvas and Kaggle. You should indicate your Team Name on Kaggle Leaderboard   and team members in the report.

2. You must submit your output Kaggle CSV files from each model on the Fashion- MNIST dataset to their corresponding Kaggle competition webpages:

  Perceptron

  SVM

  Softmax

The baseline accuracies you should approximately reach are listed as benchmarks on each respective Kaggle leaderboard.

3. You must upload three files on Canvas:

1. All of your code (Python files and ipynb file) in a single ZIP file. The filename should benetid_mp1_code.zip. Do NOT include datasets in your zip file.

2. Your IPython notebook with output cells converted to PDF format. The filename should benetid_mp1_output.pdf.

3. A brief report in PDF format using this template. The filename should be netid_mp1_report.pdf.

Don'tforget to hit "Submit" after uploadingyour files,otherwise we will not receive your submission!

Please refer to course policies on academic honesty, collaboration, late submission, etc.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:莆田鞋在哪買:介紹十個最新購買渠道
  • 下一篇:代寫5614. C++ PROGRAMMING
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久亚洲捆绑美女| aa日韩免费精品视频一| 日韩午夜视频在线观看| 美女日韩在线中文字幕| 久久久夜色精品亚洲| 亚洲国产成人tv| 久久国产夜色精品鲁鲁99| 狠狠爱综合网| 宅男在线国产精品| 国产亚洲精品高潮| 欧美日韩国产不卡| 欧美视频在线播放| 亚洲二区免费| 国产亚洲欧美一区二区三区| 久久综合九色九九| 国产视频精品免费播放| 亚洲大片av| 亚洲美女在线看| 韩国av一区| 久久亚洲不卡| 国产精品久久久久77777| 亚洲精品影视| 亚洲永久免费av| 欧美高清视频| 一区二区三区高清视频在线观看| 红杏aⅴ成人免费视频| 国产精品视频| 欧美日韩dvd在线观看| 激情伊人五月天久久综合| 欧美激情精品久久久久久变态| 久久免费国产精品| 国产精品狼人久久影院观看方式| 久久国产88| 欧美在线视频全部完| 欧美天天在线| 一区二区欧美在线观看| 欧美高清视频在线观看| 国产欧美日本一区视频| 国产精品99久久久久久宅男| 亚洲欧美国产77777| 亚洲欧美在线一区二区| 在线观看91精品国产麻豆| 在线一区二区视频| 在线观看视频一区二区| 欧美黄色一区二区| 激情五月综合色婷婷一区二区| 国产精品毛片一区二区三区| 欧美日本免费一区二区三区| 欧美日产一区二区三区在线观看| 欧美日韩高清不卡| 国产精品毛片一区二区三区| 玖玖国产精品视频| 欧美一区二区三区免费看| 亚洲国产欧美日韩另类综合| 国产精品久久久久久妇女6080| 国产精品magnet| 久久综合伊人| 欧美视频不卡| 久久成年人视频| 麻豆成人在线观看| 亚洲欧美日韩国产一区二区三区| 老司机亚洲精品| 久久av一区二区三区| 午夜视黄欧洲亚洲| 国产精品国产三级国产专区53| 欧美一区二区免费视频| 99re视频这里只有精品| 欧美午夜精品久久久久免费视| 欧美色中文字幕| 91久久久久久| 午夜精品久久久久久久99水蜜桃| 国产精品看片你懂得| 国内视频精品| 久久天天综合| 一区二区不卡在线视频 午夜欧美不卡'| 国内精品免费在线观看| 国产三区二区一区久久| 最近中文字幕日韩精品| 久久精品国产在热久久| 欧美激情小视频| 久久一区精品| 国内精品久久久久伊人av| 欧美成人高清视频| 女人色偷偷aa久久天堂| 国产麻豆日韩欧美久久| 欧美人在线视频| 欧美网站在线观看| 国产精品区二区三区日本| 亚洲人成网站精品片在线观看| 欧美激情欧美狂野欧美精品| 日韩视频一区二区| 亚洲欧美日韩在线高清直播| 国产一区二区三区视频在线观看| 日韩视频免费大全中文字幕| 免费看黄裸体一级大秀欧美| 国产日韩欧美综合| 久久综合影音| 国产亚洲欧美日韩日本| 在线视频欧美日韩精品| 狠狠色伊人亚洲综合成人| 99在线|亚洲一区二区| 91久久精品国产91久久性色tv| 国产日韩欧美在线一区| 国产精品成人一区二区| 久久嫩草精品久久久精品| 欧美精品v国产精品v日韩精品| 久久免费视频这里只有精品| 欧美区视频在线观看| 亚洲国产影院| 国产亚洲精品资源在线26u| 久久不射电影网| 国内精品久久久久久影视8| 午夜激情一区| 亚洲视频专区在线| 亚洲男女毛片无遮挡| 国产一区二区精品久久| 国产亚洲二区| 免费永久网站黄欧美| 国产视频综合在线| 久久久久久婷| 欧美激情成人在线视频| 亚洲欧美激情一区二区| 欧美大片在线看免费观看| 国产一区日韩欧美| 欧美成人资源| 亚洲专区一二三| 久久理论片午夜琪琪电影网| 欧美jizzhd精品欧美巨大免费| 亚洲午夜精品一区二区三区他趣| 亚洲午夜黄色| 久久久久国产精品午夜一区| 国内精品嫩模av私拍在线观看| 亚洲毛片播放| 欧美午夜精品久久久久久人妖| 国产午夜精品一区二区三区视频| 一本色道久久综合狠狠躁的推荐| 欧美日本精品在线| 午夜亚洲伦理| 亚洲欧美日韩在线一区| 亚洲久久视频| 亚洲一二三四区| 亚洲无亚洲人成网站77777| 欧美日本高清视频| 欧美日韩国产bt| 欧美电影免费观看| 欧美在线|欧美| 国产欧美视频一区二区三区| 蜜桃久久精品乱码一区二区| 国产专区欧美专区| 中文精品视频一区二区在线观看| 在线成人激情视频| 欧美日韩国产小视频| 亚洲国产成人精品久久久国产成人一区| 欧美另类69精品久久久久9999| 亚洲一区二区动漫| 久久久青草婷婷精品综合日韩| 精品av久久久久电影| 久久国产乱子精品免费女| 在线观看视频一区| 韩国成人福利片在线播放| 亚洲欧美日韩在线| 99热免费精品| 欧美国产精品日韩| 国产一区二区三区四区老人|