日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP528代寫、代做c/c++編程設計

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman

Problem. This document explains the operations in detail, so you do not need previous

knowledge. You are encouraged to start this as soon as possible. Historically, as the deadline nears, the queue times on Barkla grow as more submissions are tested. You are also

encouraged to use your spare time in the labs to receive help, and clarify any queries you

have regarding the assignment.

1 The Travelling Salesman Problem (TSP)

The travelling salesman problem is a problem that seeks to answer the following question:

‘Given a list of vertices and the distances between each pair of vertices, what is the shortest

possible route that visits each vertex exactly once and returns to the origin vertex?’.

(a) A fully connected graph (b) The shortest route around all vertices

Figure 1: An example of the travelling salesman problem

The travelling salesman problem is an NP-hard problem, that meaning an exact solution

cannot be solved in polynomial time. However, there are polynomial solutions that can

be used which give an approximation of the shortest route between all vertices. In this

assignment you are asked to implement 2 of these.

1.1 Terminology

We will call each point on the graph the vertex. There are 6 vertices in Figure 1.

We will call each connection between vertices the edge. There are 15 edges in Figure 1.z

We will call two vertices connected if they have an edge between them.

The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is

(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.

A partial tour is a tour that has not yet visited all the vertices.

202**024 1

COMP528

2 The solutions

2.1 Preparation of Solution

You are given a number of coordinate files with this format:

x, y

4.81263062**6921, 8.3**19930253777

2.**156816804616, 0.39593575612759

1.13649642931556, 2.2**59458630845

4.4**7**99682118, 2.9749120444**06

9.8****616851393, 9.107****070**

Figure 2: Format of a coord file

Each line is a coordinate for a vertex, with the x and y coordinate being separated by a

comma. You will need to convert this into a distance matrix.

0.000000 8.177698 7.099481 5.381919 5.0870**

8.177698 0.000000 2.577029 3.029315 11.138848

7.099481 2.577029 0.000000 3.426826 11.068045

5.381919 3.029315 3.426826 0.000000 8.139637

5.0870** 11.138848 11.068045 8.139637 0.000000

Figure 3: A distance matrix for Figure 2

To convert the coordinates to a distance matrix, you will need make use of the euclidean

distance formula.

d =

q

(xi − xj )

2 + (yi − yj )

2

(1)

Figure 4: The euclidean distance formula

Where: d is the distance between 2 vertices vi and vj

, xi and yi are the coordinates of the

vertex vi

, and xj and yj are the coordinates of the vertex vj

.

202**024 2

COMP528

2.2 Cheapest Insertion

The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it looks for a vertex that hasn’t been visited, and inserts it between two connected

vertices in the tour, such that the cost of inserting it between the two connected vertices is

minimal.

These steps can be followed to implement the cheapest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always

pick the lowest index or indices.

1. Start off with a vertex vi

.

Figure 5: Step 1 of Cheapest Insertion

2. Find a vertex vj such that the dist(vi

, vj ) is minimal, and create a partial tour (vi

, vj

, vi)

Figure 6: Step 2 of Cheapest Insertion

3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and

vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +

dist(vn+1, vk) − dist(vn, vn+1) is minimal.

202**024 3

COMP528

Figure 7: Step 3 of Cheapest Insertion

4. Repeat step 3 until all vertices have been visited, and are in the tour.

Figure 8: Step 4 of Cheapest Insertion

Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11

2.3 Farthest Insertion

The farthest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it checks for the farthest vertex not visited from any vertex within the partial tour, and

then inserts it between two connected vertices in the partial tour where the cost of inserting

it between the two connected vertices is minimal.

202**024 4

COMP528

These steps can be followed to implement the farthest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always

pick the lowest index(indices).

1. Start off with a vertex vi

.

Figure 10: Step 1 of Farthest Insertion

2. Find a vertex vj such that dist(vi

, vj ) is maximal, and create a partial tour (vi

, vj

, vi).

Figure 11: Step 2 of Farthest Insertion

3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an

unvisited vertex vk such that dist(vn, vk) is maximal.

Figure 12: Step 3 of Farthest Insertion

202**024 5

COMP528

4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is

a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) − dist(vn, vn+1) is

minimal.

Figure 13: Step 4 of Farthest Insertion

5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.

Figure 14: Step 3(2) of Farthest Insertion

Figure 15: Step 4(2) of Farthest Insertion

202**024 6

COMP528

Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11

3 Running your programs

Your program should be able to be ran like so:

./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >

Therefore, your program should accept a coordinate file, and an output file as arguments.

Note that C considers the first argument as the program executable.

Both implementations should read a coordinate file, run either cheapest insertion or farthest

insertion, and write the tour to the output file.

3.1 Provided Code

You are provided with code that can read the coordinate input from a file, and write the

final tour to a file. This is located in the file coordReader.c. You will need to include this

file when compiling your programs.

The function readNumOfCoords() takes a filename as a parameter and returns the number

of coordinates in the given file as an integer.

The function readCoords() takes the filename and the number of coordinates as parameters,

and returns the coordinates from a file and stores it in a two-dimensional array of doubles,

where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y

coordinate for the ith coordinate.

The function writeTourToFile() takes the tour, the tour length, and the output filename

as parameters, and writes the tour to the given file.

202**02**

University of Liverpool Continuous Assessment 1 COMP528

4 Instructions

• Implement a serial solution for the cheapest insertion and the farthest insertion. Name

these: cInsertion.c, fInsertion.c.

• Implement a parallel solution, using OpenMP, for the cheapest insertion and the farthest insertion. Name these: ompcInsertion.c, ompfInsertion.c.

• Create a Makefile and call it ”Makefile” which performs as the list states below. Without the Makefile, your code will not grade on CodeGrade (see more in section 5.1).

– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU compiler

– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler

– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the

GNU compiler

– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the

GNU compiler

– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with

the Intel compiler

– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel

compiler.

• Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording

the time it takes to solve each one. Record the start time after you read from the

coordinates file, and the end time before you write to the output file. Do all testing

with the large data file.

• Plot a speedup plot with the speedup on the y-axis and the number of threads on the

x-axis for each parallel solution.

• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of

threads on the x-axis for each parallel solution.

• Write a report that, for each solution, using no more than 1 page per solution,

describes: your serial version, and your parallelisation strategy

• In your report, include: the speedup and parallel efficiency plots, how you conducted

each measurement and calculation to plot these, and sreenshots of you compiling and

running your program. These do not contribute to the page limit

202**024 8

COMP528

• Your final submission should be uploaded onto CodeGrade. The files you

upload should be:

– Makefile

– cInsertion.c

– fInsertion.c

– ompcInsertion.c

– ompfInsertion.c

– report.pdf

5 Hints

You can also parallelise the conversion of the coordinates to the distance matrix.

When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...

int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

For a 2-D array:

int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;

for ( int i = 0 ; i < numOfElements ; i ++){

twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

}

5.1 Makefile

You are instructed to use a MakeFile to compile the code in any way you like. An example

of how to use a MakeFile can be used here:

{make command } : { t a r g e t f i l e s }

{compile command}

c i : c I n s e r t i o n . c coordReader . c

gcc c I n s e r t i o n . c coordReader . c −o c i . exe −lm

Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,

the compile command is automatically executed. It is worth noting, the compile command

must be indented. The target files are the files that must be present for the make command

to execute.

202**024 9

COMP528

6 Marking scheme

1 Code that compiles without errors or warnings 15%

2 Same numerical results for test cases 20%

3 Speedup plot 10%

4 Parallel Efficiency Plot 10%

5 Parallel efficiency up to ** threads 15%

6 Speed of program 10%

11 Clean code and comments 10%

12 Report 10%

Table 1: Marking scheme

7 Deadline

202**024 10

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:MA2552代做、代寫Matlab編程語言
  • 下一篇:代寫選股公式 代做通達信量中尋莊副圖指標
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲视频网在线直播| 亚洲精品乱码久久久久久| 伊人久久综合97精品| 亚洲色诱最新| 国产一区免费视频| 欧美专区日韩专区| 国产精品久久77777| 久久久国产精品亚洲一区| 欧美国产在线电影| 女人色偷偷aa久久天堂| 国产精品专区第二| 久久久国产精品一区二区三区| 亚洲国产91精品在线观看| 亚洲国产成人高清精品| 一区二区三区四区国产| **网站欧美大片在线观看| 亚洲日本精品国产第一区| 久久婷婷影院| 久久欧美肥婆一二区| 亚洲第一页在线| 欧美日韩一区二区视频在线观看| 国产偷自视频区视频一区二区| 在线观看欧美成人| 91久久综合亚洲鲁鲁五月天| 欧美尤物巨大精品爽| 欧美天堂亚洲电影院在线播放| 99在线|亚洲一区二区| 亚洲精品欧洲| 亚洲青色在线| 久热精品视频在线观看| 91久久线看在观草草青青| 午夜久久黄色| 国产丝袜一区二区| 欧美成人激情在线| 欧美国产欧美综合| 亚洲国产欧美精品| 国产综合欧美在线看| 美女诱惑黄网站一区| 99天天综合性| 久久久久国产精品一区二区| 韩日精品视频| 国产一区二区日韩精品| 午夜日本精品| 午夜欧美电影在线观看| 久久国产精品一区二区三区| 国产亚洲成年网址在线观看| 欧美日韩精品中文字幕| 亚洲精品中文字| 亚洲免费久久| 99re6热在线精品视频播放速度| 亚洲欧洲av一区二区三区久久| 欧美视频手机在线| 亚洲伊人第一页| 欧美日韩无遮挡| 国产精品夫妻自拍| 亚洲黄色影片| 久久嫩草精品久久久精品| 国产片一区二区| 亚洲精品影视在线观看| 国产欧美亚洲视频| 亚洲一区二区三区四区视频| 亚洲高清在线播放| 国产欧美一区二区精品仙草咪| 美女诱惑黄网站一区| 亚洲婷婷免费| 欧美亚洲三区| 正在播放欧美一区| 国产一区91精品张津瑜| 亚洲人体影院| 欧美视频三区在线播放| 国产精品久久久久一区二区| 永久域名在线精品| 国内精品久久久久久久97牛牛| 在线免费观看视频一区| 国产精品日韩久久久久| 一本久久综合| 亚洲成人自拍视频| 国产免费成人在线视频| 快射av在线播放一区| 亚洲区一区二区三区| 久久久久国产精品麻豆ai换脸| 久久香蕉精品| 亚洲欧美综合精品久久成人| 亚洲精品在线三区| 欧美午夜精品一区二区三区| 亚洲婷婷在线| 国产亚洲精品久久久久动| 久久国产欧美精品| av不卡在线看| 9l视频自拍蝌蚪9l视频成人| 欧美一区二区三区喷汁尤物| 亚洲福利视频网站| 亚洲裸体在线观看| 国产精品亚洲欧美| 欧美一区二区国产| 国产精品视频一二三| 欧美不卡一卡二卡免费版| 国产精品入口夜色视频大尺度| 欧美色123| 亚洲麻豆视频| 久久综合给合久久狠狠狠97色69| 伊人久久综合97精品| 欧美日韩亚洲另类| 欧美日韩国产免费| 国产精品v欧美精品∨日韩| 国内视频一区| 国产精品久久久久久久午夜| 性亚洲最疯狂xxxx高清| 国语自产在线不卡| 国产精品视频自拍| 久久综合色8888| 久久免费国产精品1| 久久综合色综合88| 黄色亚洲大片免费在线观看| 国产日韩欧美不卡在线| 尤妮丝一区二区裸体视频| 国产一区二区成人| 国产深夜精品| 久久久另类综合| 久久久久久9| 性欧美8khd高清极品| 亚洲丰满少妇videoshd| 国产精品一区在线观看你懂的| 好吊色欧美一区二区三区四区| 久久久久久亚洲精品不卡4k岛国| 欧美中文在线观看国产| 在线一区二区三区四区| 欧美—级高清免费播放| 欧美一区二区免费视频| 国产女人水真多18毛片18精品视频| 国产精品福利网| 亚洲一区3d动漫同人无遮挡| 亚洲精品视频在线播放| 国产精品丝袜久久久久久app| 国产免费一区二区三区香蕉精| 有坂深雪在线一区| 伊大人香蕉综合8在线视| 美女网站在线免费欧美精品| 国产视频一区欧美| 免费欧美网站| 欧美一区精品| 亚洲大胆av| 国产精品试看| 日韩视频精品在线观看| 亚洲激情第一页| 欧美精品一区二区三区蜜臀| 国产性做久久久久久| 国产精品久久久久久亚洲毛片| 久久久久成人精品| 亚洲激情亚洲| 国产精品午夜春色av| 国内成人精品一区| 欧美在线观看视频在线| 在线欧美小视频| 亚洲午夜极品| 国内激情久久| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久av下载红粉| 国产精品极品美女粉嫩高清在线| 亚洲一区3d动漫同人无遮挡| 国产精品专区一| 欧美视频在线观看一区| 久久这里只精品最新地址| 亚洲乱码国产乱码精品精天堂|