日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

MA2552代做、代寫Matlab編程語言

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

−π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ (0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f, an integer m, and the constants

ak, solves the O.D.E. (1). Note that some systems might have an infinite number of

solutions. In that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫CE335編程、代做Python,C++程序設計
  • 下一篇:COMP528代寫、代做c/c++編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        91久久精品国产91久久性色tv| 曰韩精品一区二区| 欧美激情一区三区| 亚洲欧洲在线看| 国产精品对白刺激久久久| 亚洲精美视频| 免费视频亚洲| 久久精品国产一区二区三区| 欧美在线综合| 亚洲一区二区三区视频播放| 久久一区中文字幕| 午夜精品在线看| 一区二区三区在线看| 久久九九热re6这里有精品| 亚洲欧美国产视频| 国产欧美大片| 久久久激情视频| 日韩一级裸体免费视频| 国产一区二区久久| 久久精品一区二区三区中文字幕| 黄色成人av在线| 久久伊人一区二区| 久久久久久免费| 亚洲一区二区视频在线观看| 玖玖精品视频| 欧美在线观看视频一区二区| 国产精品入口麻豆原神| 免费成人高清视频| 久久精品国产91精品亚洲| 久久在线视频在线| 欧美日韩国产欧| 欧美麻豆久久久久久中文| 欧美成人免费全部观看天天性色| 久久成人精品一区二区三区| 好看的av在线不卡观看| 欧美a级一区| 欧美另类99xxxxx| 久久婷婷国产麻豆91天堂| 黄网动漫久久久| 欧美成人亚洲成人| 久久人91精品久久久久久不卡| 欧美大片va欧美在线播放| 亚洲伊人伊色伊影伊综合网| 欧美ab在线视频| 日韩一级裸体免费视频| 国产日韩精品在线观看| 国产精品一区二区久久精品| 亚洲二区精品| 国产一区二区电影在线观看| 一个色综合av| 免费成人小视频| 久久激情视频免费观看| 一本一本久久| 亚洲开发第一视频在线播放| 国产在线精品成人一区二区三区| 国产视频久久久久久久| 一区二区三区鲁丝不卡| 欧美成人精品| 国产精品久久久久久久久借妻| 在线精品国产欧美| 久久精品1区| 亚洲欧洲另类国产综合| 性欧美xxxx大乳国产app| 亚洲免费在线播放| 国产精品视频最多的网站| 欧美视频在线观看一区| 亚洲国产精品va在看黑人| 亚洲一线二线三线久久久| 这里只有精品电影| 亚洲欧美另类久久久精品2019| 国模精品娜娜一二三区| 国内偷自视频区视频综合| 91久久中文| 欧美精品久久久久a| 亚洲一区二区三区激情| 亚洲三级视频在线观看| 一区在线免费| 亚洲乱码国产乱码精品精98午夜| 精品91免费| 欧美精品1区2区| 欧美在线视频免费播放| 亚洲自拍偷拍麻豆| 久久综合久久综合九色| 久久另类ts人妖一区二区| 国产精品日韩欧美一区二区| 久久高清国产| 久久成人久久爱| 日韩视频永久免费观看| 9l视频自拍蝌蚪9l视频成人| 亚洲毛片在线观看| 韩国av一区二区三区| 亚洲精品视频免费在线观看| 亚洲一区激情| 国产一区二区主播在线| 国产精品二区二区三区| 亚洲欧美日韩精品久久久| 欧美激情亚洲一区| 亚洲激情在线视频| 欧美一站二站| 国产精品乱码一区二三区小蝌蚪| 亚洲天堂成人在线视频| 午夜精品久久久久影视| 欧美日韩第一区日日骚| 亚洲国产一区二区三区青草影视| 欧美日韩在线免费| 久久狠狠一本精品综合网| 国产午夜精品一区二区三区欧美| 欧美凹凸一区二区三区视频| 亚洲激情在线视频| 欧美日韩激情小视频| 欧美日本中文| 亚洲人成网站色ww在线| 在线成人www免费观看视频| 国产欧美日本在线| 激情欧美一区二区| 亚洲国产一区二区三区高清| 欧美色欧美亚洲另类七区| 欧美精品福利在线| 国产精品久久久久久久一区探花| 中文精品视频一区二区在线观看| 亚洲人成亚洲人成在线观看图片| 亚洲精品在线视频| 欧美日韩国产色站一区二区三区| 国产欧美精品国产国产专区| 欧美日韩视频在线一区二区观看视频| 欧美日本韩国在线| 夜夜嗨av一区二区三区中文字幕| 亚洲国产精品久久久久秋霞不卡| 国产一级一区二区| 久久精品国产第一区二区三区| 欧美一级理论片| 久久高清国产| 久久免费视频在线观看| 伊人久久亚洲热| 国产精品99久久久久久有的能看| 免费不卡视频| 国产一区二区剧情av在线| 伊大人香蕉综合8在线视| 欧美一区二区精品| 久久精品理论片| 欧美日韩午夜激情| 亚洲精品欧美一区二区三区| 亚洲欧美成人一区二区在线电影| 久久婷婷亚洲| 欧美超级免费视 在线| 国产精品专区h在线观看| 亚洲视频大全| 亚洲欧美亚洲| 久久综合成人精品亚洲另类欧美| 影视先锋久久| 国产精品卡一卡二卡三| 欧美aⅴ99久久黑人专区| 久久最新视频| 欧美影院视频| 在线精品福利| 亚洲精品影视| 一卡二卡3卡四卡高清精品视频| 国产视频一区在线观看一区免费| 久久精品五月婷婷| 欧美日韩亚洲综合一区| 欧美一级片在线播放| 亚洲精品免费电影| 极品少妇一区二区三区精品视频| 亚洲婷婷综合久久一本伊一区|