日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CHC6089、代寫 java/c++程序語言

時間:2023-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯




OBU COMPUTING
Module CHC6089: Machine Learning:  Semester 1, 2023/24
Coursework 1: Experimental Comparison of Different Supervised Machine Learning Algorithms Using UCI Dataset
 
For this coursework 1, you are required to evaluate and compare fivesupervised machine learning algorithms using UCI dataset in Python programming language methods. Every student is expected to have their individual dataset according to their class grouping. This coursework 1 is worth 30% of the module mark.
Learning Outcomes
1. Evaluate and articulate the issues and challenges in machine learning, including model selection, complexity and feature selection.
2. Demonstrate a working knowledge of the variety of mathematical techniques normally adopted for machine learning problems, and of their application to creating effective solutions.
3. Critically evaluate the performance and drawbacks of a proposed solution to a machine learning problem.
4. Create solutions to machine learning problems using appropriate software.
Data set
 
This coursework is designed to allow you to work freely and make sure that your report is unique by avoiding collusions.  No two students ought to possess an identical or comparable dataset. Each student will receive a different UCI dataset at random, and you will need to download it from the student website as designated by the module leader. The dataset that you have been given must be used and followed strictly. The purpose of this instruction is to encourage students to work independently, avoid cheating and collusion; any infringement will result in a deduction of twenty points.  
Machine Learning and Evaluation
For this coursework you will evaluate five supervised learningmethods on UCI dataset in Python. The first algorithm is linear regression, second algorithm is logistic regression, third algorithm is neural network, fourth model is decision tree and the fifth model is k-nearest neighbour. 
You may implement these algorithms using the inbuilt classifiers; however you are highly encouraged to implement the functionsyourself to train the classifiers. More so, inbuilt function for error measurement is not allowed.
 
The objective of this coursework is to experimentally investigate which supervised algorithm is best suited for the dataset, and whichparameter values are best. In order to answer this question you need to evaluate the error measurement rate and any other performance evaluation metrics you can provide.
 
Experiments must at least show:
• The training and test error for all the models.
• Develop appropriate data handling code. 
• The use of inbuilt error measurement is not allowed for this coursework.
• Experimentally compare different hyper-parameters.
• Provide a visualization of how data was classified for each method (or parameter value), for example based on a scatter plot of two of the features. You are allowed to utilize any inbuilt visualization routines you like, such as plot, or scatter. 
The entire experiment must be submitted as jupyter notebook script file (.ipynb) from which all results and figures can be reproduced.
 
 
 
Report structure and assessment (30% of module mark)
1) Write a brief introduction that introduces (5%)
a) Provide a brief introduction of the supervised learning problem as it relates to real-life challenges.
b) Give details of the dataset and other information that describe the dataset.
c) Briefly explain the five models as well as possible parameters.
d) Briefly explain how the models can be individually applied to the dataset.
 
2) Realize and describe the experiment that evaluates the error measurement rate for all the models on your specific dataset. Explain the choice (or necessity) of your error measurement method. Make sure you use appropriate illustrations and diagrams as well as statistics. What other evaluation metrics than just theerror measurement method could be important to decide which method is most suited? More so, discuss the result of the chosen evaluate metrics.  (20%)
 
3) Write a brief conclusion on the results. Mention the algorithm that provides the best result and mentioned the hyper-parameters used. Also, provide a comparison of all the model performance results. (5%)
 
Submission
 
Submit your report following the report structure provided above. Include step-by-step descriptions of the tasks you performed and the results obtained during the experiment. Ensure that your report is well-organized, clearly written, and includes all the necessary evaluation metrics and graphs as specified in the coursework requirements. The submission deadline is week 9, November 2023, by 16:00. Late submissions may incur penalties of up to 10 marks reduction, so make sure to plan your work accordingly. Failure to submit your coursework will result to Zero Mark. In the case of exceptional circumstances, contact the Award Administrator in advance.
 
Submission Format:
The coursework assignment submitted should be compressed into a .zip or .rar file, the following files should be contained in the compressed file:
▪ A report as a Microsoft Word document.
   File name format: ‘Student ID_MLCoursework1_Report.docx’
▪ A .zip or .rar file containing the report experiments: all the program’s sources, including the code, graphs, model architecture, results, and diagrams from the experiments. All implementation source code must be submitted as a Jupyter Notebook script (.ipynb) for easy reproducibility. Your final zipped folder should be submitted digitally to the student website.
 請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP528、代做 Python ,java 編程
  • 下一篇:COMP24011 代做、代寫 java/Python 程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        午夜在线视频一区二区区别| 亚洲免费播放| 欧美全黄视频| 亚洲午夜精品久久| 国产精品久久久一区二区三区| 亚洲国产欧美久久| 国产精品第2页| 久久野战av| 亚洲高清免费| 国产九九视频一区二区三区| 亚洲欧美亚洲| 欧美日韩国产在线播放网站| 欧美成va人片在线观看| 久久精品九九| 欧美日韩国产亚洲一区| 中文在线不卡视频| 久久午夜羞羞影院免费观看| 亚洲日本成人在线观看| 一区二区三区欧美激情| 日韩一区二区精品在线观看| 韩国av一区二区三区在线观看| 国产日韩欧美中文| 欧美日韩在线另类| 欧美一区二区三区免费大片| 久久久人成影片一区二区三区观看| 欧美有码在线视频| 激情综合色综合久久综合| 久久人人爽人人爽| 国产精品区一区二区三| 欧美亚洲日本国产| 一本久久综合| 一本色道久久99精品综合| 久久精品最新地址| 国产区亚洲区欧美区| 国产精品久久久一区麻豆最新章节| 亚洲视频电影在线| 亚洲乱码久久| 欧美精品在线网站| 夜夜嗨一区二区三区| 亚洲国产欧美日韩另类综合| 亚洲一区二区在线免费观看| 亚洲国产欧美另类丝袜| 欧美激情a∨在线视频播放| 欧美中文日韩| 午夜精品剧场| 夜夜嗨av一区二区三区中文字幕| 国产精品久久久久久久免费软件| 国产精品美女视频网站| 欧美韩日视频| 久久九九全国免费精品观看| 国产揄拍国内精品对白| 国产一区二三区| 美女网站在线免费欧美精品| 欧美日韩一区二区视频在线| 国产亚洲一级高清| 狠狠v欧美v日韩v亚洲ⅴ| 久久久成人精品| 欧美成人精品在线| 久久婷婷国产综合国色天香| 久久99在线观看| 国产美女扒开尿口久久久| 欧美精品自拍偷拍动漫精品| 蜜桃久久av一区| 亚洲国产成人久久综合| 亚洲视频综合在线| 国产精品久久久久久久久搜平片| 国产精品福利影院| 国产精品av久久久久久麻豆网| 国产一区二区丝袜高跟鞋图片| 亚洲一区在线直播| 亚洲精品综合在线| 亚洲毛片av在线| 国产精品日日做人人爱| 亚洲免费观看在线视频| 欧美日韩亚洲国产一区| 久久久人成影片一区二区三区观看| 欧美激情aaaa| 久久国产福利国产秒拍| 理论片一区二区在线| 99精品99久久久久久宅男| 小黄鸭精品密入口导航| 欧美日韩在线不卡| 日韩亚洲国产欧美| 先锋影音国产一区| 欧美顶级艳妇交换群宴| 一区二区三区在线观看国产| 欧美理论电影在线观看| 亚洲美女色禁图| 久久久夜色精品亚洲| 亚洲蜜桃精久久久久久久| 欧美中文字幕精品| 在线亚洲美日韩| 欧美一级午夜免费电影| 国产夜色精品一区二区av| 一区二区三区av| 小嫩嫩精品导航| 国产精品一级二级三级| 国产精品www色诱视频| 国产精品久久久免费| 欧美在线高清| 亚洲嫩草精品久久| 欧美日韩亚洲一区| 亚洲视频国产视频| 亚洲一区二区三区精品在线观看| 欧美午夜一区二区| 国产一区二区在线观看免费播放| 国产主播喷水一区二区| 99精品99| 99热这里只有成人精品国产| 亚洲欧美视频一区| 香港成人在线视频| 国产精品porn| 久久人人97超碰精品888| 久久国产黑丝| 亚洲精品综合久久中文字幕| 老司机精品福利视频| 老司机午夜精品视频在线观看| 久久亚洲精品伦理| 国产精品一区一区三区| 亚洲精品久久久久久久久久久久久| 国产精品久久久久久久电影| 国产精品天美传媒入口| 久久阴道视频| 夜夜爽99久久国产综合精品女不卡| 欧美亚洲不卡| 99视频热这里只有精品免费| 欧美日韩精品是欧美日韩精品| 国产精品成人免费视频| 99re6这里只有精品视频在线观看| 欧美日韩成人在线| 欧美日本久久| 欧美中文在线观看| 亚洲欧美制服中文字幕| 一区二区三区回区在观看免费视频| 国产欧美日韩91| 久久久久久久欧美精品| 欧美人与性动交α欧美精品济南到| 亚洲国产精品热久久| 国产精品wwwwww| 男女av一区三区二区色多| 国产精品嫩草久久久久| 久久www成人_看片免费不卡| 欧美欧美午夜aⅴ在线观看| 久久九九热免费视频| 欧美一区91| 一区二区三区高清不卡| 国产欧美日韩三区| 欧美日韩国产欧| 欧美精品色一区二区三区| 国产精品福利在线观看网址| 在线看日韩av| 久久久777| 久久青青草综合| 亚洲精品中文字幕在线| 亚洲淫性视频| 亚洲综合色噜噜狠狠| 亚洲第一主播视频| 国产日韩欧美亚洲一区| 欧美日韩国产成人在线免费| 香港久久久电影| 亚洲欧美中文日韩v在线观看| 欧美黄色一区二区| 国产日韩欧美一区| 一区二区三区免费在线观看|