日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CHC6089、代寫 java/c++程序語言

時間:2023-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯




OBU COMPUTING
Module CHC6089: Machine Learning:  Semester 1, 2023/24
Coursework 1: Experimental Comparison of Different Supervised Machine Learning Algorithms Using UCI Dataset
 
For this coursework 1, you are required to evaluate and compare fivesupervised machine learning algorithms using UCI dataset in Python programming language methods. Every student is expected to have their individual dataset according to their class grouping. This coursework 1 is worth 30% of the module mark.
Learning Outcomes
1. Evaluate and articulate the issues and challenges in machine learning, including model selection, complexity and feature selection.
2. Demonstrate a working knowledge of the variety of mathematical techniques normally adopted for machine learning problems, and of their application to creating effective solutions.
3. Critically evaluate the performance and drawbacks of a proposed solution to a machine learning problem.
4. Create solutions to machine learning problems using appropriate software.
Data set
 
This coursework is designed to allow you to work freely and make sure that your report is unique by avoiding collusions.  No two students ought to possess an identical or comparable dataset. Each student will receive a different UCI dataset at random, and you will need to download it from the student website as designated by the module leader. The dataset that you have been given must be used and followed strictly. The purpose of this instruction is to encourage students to work independently, avoid cheating and collusion; any infringement will result in a deduction of twenty points.  
Machine Learning and Evaluation
For this coursework you will evaluate five supervised learningmethods on UCI dataset in Python. The first algorithm is linear regression, second algorithm is logistic regression, third algorithm is neural network, fourth model is decision tree and the fifth model is k-nearest neighbour. 
You may implement these algorithms using the inbuilt classifiers; however you are highly encouraged to implement the functionsyourself to train the classifiers. More so, inbuilt function for error measurement is not allowed.
 
The objective of this coursework is to experimentally investigate which supervised algorithm is best suited for the dataset, and whichparameter values are best. In order to answer this question you need to evaluate the error measurement rate and any other performance evaluation metrics you can provide.
 
Experiments must at least show:
• The training and test error for all the models.
• Develop appropriate data handling code. 
• The use of inbuilt error measurement is not allowed for this coursework.
• Experimentally compare different hyper-parameters.
• Provide a visualization of how data was classified for each method (or parameter value), for example based on a scatter plot of two of the features. You are allowed to utilize any inbuilt visualization routines you like, such as plot, or scatter. 
The entire experiment must be submitted as jupyter notebook script file (.ipynb) from which all results and figures can be reproduced.
 
 
 
Report structure and assessment (30% of module mark)
1) Write a brief introduction that introduces (5%)
a) Provide a brief introduction of the supervised learning problem as it relates to real-life challenges.
b) Give details of the dataset and other information that describe the dataset.
c) Briefly explain the five models as well as possible parameters.
d) Briefly explain how the models can be individually applied to the dataset.
 
2) Realize and describe the experiment that evaluates the error measurement rate for all the models on your specific dataset. Explain the choice (or necessity) of your error measurement method. Make sure you use appropriate illustrations and diagrams as well as statistics. What other evaluation metrics than just theerror measurement method could be important to decide which method is most suited? More so, discuss the result of the chosen evaluate metrics.  (20%)
 
3) Write a brief conclusion on the results. Mention the algorithm that provides the best result and mentioned the hyper-parameters used. Also, provide a comparison of all the model performance results. (5%)
 
Submission
 
Submit your report following the report structure provided above. Include step-by-step descriptions of the tasks you performed and the results obtained during the experiment. Ensure that your report is well-organized, clearly written, and includes all the necessary evaluation metrics and graphs as specified in the coursework requirements. The submission deadline is week 9, November 2023, by 16:00. Late submissions may incur penalties of up to 10 marks reduction, so make sure to plan your work accordingly. Failure to submit your coursework will result to Zero Mark. In the case of exceptional circumstances, contact the Award Administrator in advance.
 
Submission Format:
The coursework assignment submitted should be compressed into a .zip or .rar file, the following files should be contained in the compressed file:
▪ A report as a Microsoft Word document.
   File name format: ‘Student ID_MLCoursework1_Report.docx’
▪ A .zip or .rar file containing the report experiments: all the program’s sources, including the code, graphs, model architecture, results, and diagrams from the experiments. All implementation source code must be submitted as a Jupyter Notebook script (.ipynb) for easy reproducibility. Your final zipped folder should be submitted digitally to the student website.
 請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP528、代做 Python ,java 編程
  • 下一篇:COMP24011 代做、代寫 java/Python 程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲福利在线视频| 国产亚洲精品bt天堂精选| 影音先锋在线一区| 亚洲婷婷综合久久一本伊一区| 欧美日韩国产精品一区二区亚洲| 亚洲激情综合| 国产精品理论片在线观看| 欧美一区二区三区在线播放| 亚洲国产一区视频| 欧美激情欧美狂野欧美精品| 中文在线资源观看视频网站免费不卡| 欧美jizzhd精品欧美喷水| 欧美日韩亚洲一区三区| 黄色精品一区二区| 一区二区三区无毛| 国产精品视频内| 欧美特黄视频| 另类综合日韩欧美亚洲| 国产中文一区| 老牛影视一区二区三区| 国产伦精品一区二区三区四区免费| 欧美伊人久久久久久午夜久久久久| 一区二区高清视频在线观看| 国产精品成人国产乱一区| 久久美女性网| 国产精品一香蕉国产线看观看| 在线观看一区二区精品视频| 亚洲一级黄色| 国产精品美女主播在线观看纯欲| 欧美高清在线| 欧美三区免费完整视频在线观看| 国产欧美亚洲视频| 亚洲午夜国产成人av电影男同| 亚洲精品欧美专区| 99精品国产在热久久下载| 欧美国产日韩一区二区在线观看| 欧美日本高清一区| 欧美亚洲视频在线观看| 午夜精品电影| 欧美精品在线观看一区二区| 免费亚洲网站| 欧美午夜理伦三级在线观看| 国产在线欧美日韩| 国产日本亚洲高清| 欧美日韩美女在线观看| 欧美全黄视频| 久久精品国产第一区二区三区最新章节| 久久国产一区二区| 国产美女一区二区| 欧美午夜在线一二页| 国产麻豆9l精品三级站| 国产精品永久入口久久久| 欧美一级理论性理论a| 欧美日韩午夜在线视频| 亚洲尤物精选| 亚洲在线视频免费观看| 欧美三级资源在线| 日韩视频免费看| 亚洲日本中文字幕| 久久视频一区二区| 麻豆精品一区二区综合av| 欧美精品国产精品日韩精品| 亚洲在线观看| 国产日韩欧美高清| 欧美国产欧美综合| 亚洲成色最大综合在线| 激情一区二区三区| 国产日韩一区在线| 亚洲毛片在线| 欧美精品日本| 性8sex亚洲区入口| 一区二区成人精品| 亚洲美女黄网| 日韩午夜在线视频| 国产精品地址| 亚洲精品一区二区三区99| 中文亚洲欧美| 亚洲午夜视频在线| 国产欧美日韩伦理| 国产日韩欧美在线视频观看| 午夜精品www| 午夜久久99| 欧美激情综合五月色丁香小说| 国产精品一区毛片| 久久精品日韩欧美| 欧美国产日韩免费| 一本到高清视频免费精品| 亚洲精品国产无天堂网2021| 国产亚洲一区在线| 国产免费一区二区三区香蕉精| 欧美日韩国产精品自在自线| 99国产精品99久久久久久粉嫩| 欧美视频一区| 欧美fxxxxxx另类| 国产婷婷色一区二区三区在线| 国产精品人成在线观看免费| 欧美日韩在线亚洲一区蜜芽| 国产日韩欧美日韩| 国产婷婷成人久久av免费高清| 亚洲激情电影中文字幕| 欧美激情一区二区三区在线| 六月丁香综合| 欧美日本韩国在线| 欧美久久久久久| 最新热久久免费视频| 欧美午夜精品久久久久久孕妇| 亚洲欧美国产va在线影院| 欧美jizzhd精品欧美喷水| 在线视频欧美精品| 欧美韩日视频| 国产精品青草久久| 国产伦精品一区二区三区四区免费| 国产精品一区二区久久国产| 麻豆视频一区二区| 99精品视频免费全部在线| 日韩一区二区电影网| 亚洲欧美亚洲| 亚洲天堂视频在线观看| 一级日韩一区在线观看| 久久综合久久综合九色| 亚洲欧洲在线播放| av成人免费观看| 欧美高清在线视频观看不卡| 中文av字幕一区| 在线日韩av永久免费观看| 久久这里只有精品视频首页| 亚洲精品免费一区二区三区| 极品日韩久久| 亚洲欧洲三级| 伊人精品视频| 欧美精选一区| 美腿丝袜亚洲色图| 亚洲第一色中文字幕| 韩国三级电影久久久久久| 在线成人小视频| 99精品国产在热久久下载| 欧美日韩三区四区| 国产在线精品一区二区夜色| 欧美色图天堂网| 一区二区亚洲| 欲色影视综合吧| 国产一区二区三区黄视频| 欧美大片在线观看一区| 久久久久久久久伊人| 亚洲国产一区在线| 在线观看日韩欧美| 国内精品写真在线观看| 欧美有码在线观看视频| 欧美连裤袜在线视频| 韩国一区二区三区在线观看| 久久午夜羞羞影院免费观看| 国产欧美日韩一区二区三区| 欧美精品一区二区在线观看| 国产欧美日韩精品一区| 亚洲欧美成人网| 国产精品成人一区二区三区吃奶| 亚洲欧洲精品一区| 欧美精品v日韩精品v国产精品| 国产一区二区三区久久久| 欧美一区二区三区精品电影| 狠狠综合久久av一区二区小说| 国产精品理论片| 欧美午夜视频一区二区| 国产欧美不卡|