日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫COMP528、代做 Python ,java 編程

時間:2023-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman
Problem. This document explains the operations in detail, so you do not need previous
knowledge. You are encouraged to start this as soon as possible. Historically, as the dead?line nears, the queue times on Barkla grow as more submissions are tested. You are also
encouraged to use your spare time in the labs to receive help, and clarify any queries you
have regarding the assignment.
1 The Travelling Salesman Problem (TSP)
The travelling salesman problem is a problem that seeks to answer the following question:
‘Given a list of vertices and the distances between each pair of vertices, what is the shortest
possible route that visits each vertex exactly once and returns to the origin vertex?’.
(a) A fully connected graph (b) The shortest route around all vertices
Figure 1: An example of the travelling salesman problem
The travelling salesman problem is an NP-hard problem, that meaning an exact solution
cannot be solved in polynomial time. However, there are polynomial solutions that can
be used which give an approximation of the shortest route between all vertices. In this
assignment you are asked to implement 2 of these.
1.1 Terminology
We will call each point on the graph the vertex. There are 6 vertices in Figure 1.
We will call each connection between vertices the edge. There are 15 edges in Figure 1.z
We will call two vertices connected if they have an edge between them.
The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is
(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.
A partial tour is a tour that has not yet visited all the vertices.
202**024 1
COMP528
2 The solutions
2.1 Preparation of Solution
You are given a number of coordinate files with this format:
x, y
4.81263062**6921, 8.3**19930253777
2.**156816804616, 0.39593575612759
1.13649642931556, 2.2**59458630845
4.4**7**99682118, 2.9749120444**06
9.8****616851393, 9.107****070**
Figure 2: Format of a coord file
Each line is a coordinate for a vertex, with the x and y coordinate being separated by a
comma. You will need to convert this into a distance matrix.
0.000000 8.177698 7.099481 5.381919 5.0870**
8.177698 0.000000 2.577029 3.029315 11.138848
7.099481 2.577029 0.000000 3.426826 11.068045
5.381919 3.029315 3.426826 0.000000 8.139637
5.0870** 11.138848 11.068045 8.139637 0.000000
Figure 3: A distance matrix for Figure 2
To convert the coordinates to a distance matrix, you will need make use of the euclidean
distance formula.
d =
q (xi ? xj )
2 + (yi ? yj )
2
(1)
Figure 4: The euclidean distance formula
Where: d is the distance between 2 vertices vi and vj
, xi and yi are the coordinates of the
vertex vi
, and xj and yj are the coordinates of the vertex vj
.
202**024 2
COMP528
2.2 Cheapest Insertion
The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it looks for a vertex that hasn’t been visited, and inserts it between two connected
vertices in the tour, such that the cost of inserting it between the two connected vertices is
minimal.
These steps can be followed to implement the cheapest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always
pick the lowest index or indices.
1. Start off with a vertex vi
.
Figure 5: Step 1 of Cheapest Insertion
2. Find a vertex vj such that the dist(vi
, vj ) is minimal, and create a partial tour (vi
, vj
, vi)
Figure 6: Step 2 of Cheapest Insertion
3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and
vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +
dist(vn+1, vk) ? dist(vn, vn+1) is minimal.
202**024 3
COMP528
Figure 7: Step 3 of Cheapest Insertion
4. Repeat step 3 until all vertices have been visited, and are in the tour.
Figure 8: Step 4 of Cheapest Insertion
Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11
2.3 Farthest Insertion
The farthest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it checks for the farthest vertex not visited from any vertex within the partial tour, and
then inserts it between two connected vertices in the partial tour where the cost of inserting
it between the two connected vertices is minimal.
202**024 4
COMP528
These steps can be followed to implement the farthest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always
pick the lowest index(indices).
1. Start off with a vertex vi
.
Figure 10: Step 1 of Farthest Insertion
2. Find a vertex vj such that dist(vi
, vj ) is maximal, and create a partial tour (vi
, vj
, vi).
Figure 11: Step 2 of Farthest Insertion
3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an
unvisited vertex vk such that dist(vn, vk) is maximal.
Figure 12: Step 3 of Farthest Insertion
202**024 5
COMP528
4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is
a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) ? dist(vn, vn+1) is
minimal.
Figure 13: Step 4 of Farthest Insertion
5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.
Figure 14: Step 3(2) of Farthest Insertion
Figure 15: Step 4(2) of Farthest Insertion
202**024 6
COMP528
Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11
3 Running your programs
Your program should be able to be ran like so:
./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >
Therefore, your program should accept a coordinate file, and an output file as arguments.
Note that C considers the first argument as the program executable.
Both implementations should read a coordinate file, run either cheapest insertion or farthest
insertion, and write the tour to the output file.
3.1 Provided Code
You are provided with code that can read the coordinate input from a file, and write the
final tour to a file. This is located in the file coordReader.c. You will need to include this
file when compiling your programs.
The function readNumOfCoords() takes a filename as a parameter and returns the number
of coordinates in the given file as an integer.
The function readCoords() takes the filename and the number of coordinates as parameters,
and returns the coordinates from a file and stores it in a two-dimensional array of doubles,
where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y
coordinate for the ith coordinate.
The function writeTourToFile() takes the tour, the tour length, and the output filename
as parameters, and writes the tour to the given file.
202**02**
University of Liverpool Continuous Assessment 1 COMP528
4 Instructions
? Implement a serial solution for the cheapest insertion and the farthest insertion. Name
these: cInsertion.c, fInsertion.c.
? Implement a parallel solution, using OpenMP, for the cheapest insertion and the far?thest insertion. Name these: ompcInsertion.c, ompfInsertion.c.
? Create a Makefile and call it ”Makefile” which performs as the list states below. With?out the Makefile, your code will not grade on CodeGrade (see more in section 5.1).
– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU com?piler
– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler
– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the
GNU compiler
– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the
GNU compiler
– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with
the Intel compiler
– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel
compiler.
? Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording
the time it takes to solve each one. Record the start time after you read from the
coordinates file, and the end time before you write to the output file. Do all testing
with the large data file.
? Plot a speedup plot with the speedup on the y-axis and the number of threads on the
x-axis for each parallel solution.
? Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of
threads on the x-axis for each parallel solution.
? Write a report that, for each solution, using no more than 1 page per solution,
describes: your serial version, and your parallelisation strategy
? In your report, include: the speedup and parallel efficiency plots, how you conducted
each measurement and calculation to plot these, and sreenshots of you compiling and
running your program. These do not contribute to the page limit
202**024 8
COMP528
? Your final submission should be uploaded onto CodeGrade. The files you
upload should be:
– Makefile
– cInsertion.c
– fInsertion.c
– ompcInsertion.c
– ompfInsertion.c
– report.pdf
5 Hints
You can also parallelise the conversion of the coordinates to the distance matrix.
When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...
int ? o n e d a r ra y = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
For a 2-D array:
int ?? twod a r ra y = ( int ??) malloc ( numOfElements ? s i z e o f ( int ? ) ) ;
for ( int i = 0 ; i < numOfElements ; i ++){
twod a r ra y [ i ] = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
}
5.1 Makefile
You are instructed to use a MakeFile to compile the code in any way you like. An example
of how to use a MakeFile can be used here:
{make command } : { t a r g e t f i l e s }
{compile command}
c i : c I n s e r t i o n . c coordReader . c
gcc c I n s e r t i o n . c coordReader . c ?o c i . exe ?lm
Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,
the compile command is automatically executed. It is worth noting, the compile command
must be indented. The target files are the files that must be present for the make command
to execute.
202**024 9
COMP528
6 Marking scheme
1 Code that compiles without errors or warnings 15%
2 Same numerical results for test cases 20%
3 Speedup plot 10%
4 Parallel Efficiency Plot 10%
5 Parallel efficiency up to ** threads 15%
6 Speed of program 10%
11 Clean code and comments 10%
12 Report 10%
Table 1: Marking scheme
7 Deadline
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:4CCS1CS1代做、代寫c/c++,Python程序
  • 下一篇:代做CHC6089、代寫 java/c++程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        在线视频国内自拍亚洲视频| 欧美国产第一页| 中日韩高清电影网| 欧美理论大片| 欧美日韩日日骚| 夜夜嗨av一区二区三区四季av| 久久久精品国产99久久精品芒果| 亚洲视频第一页| 亚洲精品系列| 亚洲国产高清一区二区三区| 国产精品免费一区二区三区在线观看| 久久精品国产v日韩v亚洲| 欧美自拍偷拍午夜视频| 亚洲免费视频网站| 一区二区高清在线| 中文久久精品| 好看的亚洲午夜视频在线| 免费欧美在线| 亚洲欧美日韩一区二区在线| 亚洲综合色激情五月| 久久成人国产精品| 亚洲电影免费在线| 日韩午夜激情电影| 欧美日韩一区综合| 久久成人免费日本黄色| 欧美一级理论性理论a| 久久精品人人做人人爽| 亚洲激情一区二区三区| 亚洲欧美制服中文字幕| 欧美日韩四区| 欧美精品激情在线观看| 久久精品国产2020观看福利| 99香蕉国产精品偷在线观看| 久久激情视频免费观看| 欧美日韩亚洲成人| 美女在线一区二区| 亚洲六月丁香色婷婷综合久久| 欧美一级二级三级蜜桃| 亚洲线精品一区二区三区八戒| 国内自拍亚洲| 欧美国产日韩精品免费观看| 欧美日本韩国在线| 欧美日韩精品欧美日韩精品| 欧美在线视频免费播放| 欧美精品v日韩精品v韩国精品v| 美玉足脚交一区二区三区图片| 久久理论片午夜琪琪电影网| 欧美日一区二区在线观看| 欧美精品色综合| 国产精品视频免费在线观看| 亚洲人成网站色ww在线| 国产情侣一区| 欧美专区在线播放| 久久一二三区| 亚洲欧美激情四射在线日| 国产精品理论片| 国产精品欧美日韩一区二区| 欧美在线视频播放| 黑人极品videos精品欧美裸| 欧美大片在线看免费观看| 国产一区二区三区高清在线观看| 狠狠狠色丁香婷婷综合激情| 亚洲精品久久久一区二区三区| 欧美一区二区三区在| 久久精品噜噜噜成人av农村| 国产精品jizz在线观看美国| 久久久综合免费视频| 亚洲无线一线二线三线区别av| 国产欧美一区二区三区沐欲| 亚洲精品中文字| 欧美资源在线观看| 亚洲尤物影院| 久久成人18免费网站| 亚洲视频电影在线| 亚洲一区二区视频在线| 欧美大学生性色视频| 国精品一区二区| 欧美激情亚洲精品| 欧美日韩在线播放三区| 欧美精品亚洲一区二区在线播放| 国内精品久久久久久影视8| 欧美区亚洲区| 91久久精品日日躁夜夜躁欧美| 欧美香蕉视频| 国产精品www| 欧美成人综合在线| 久久久一本精品99久久精品66| 亚洲欧洲久久| 中文久久精品| 久久久久国产精品www| 米奇777超碰欧美日韩亚洲| 欧美成人精品一区二区三区| 午夜精品福利电影| 99人久久精品视频最新地址| 国产日韩亚洲欧美精品| 精品91久久久久| 久久精彩免费视频| 激情六月婷婷综合| av成人免费观看| 亚洲黄色影院| 国产精品久久波多野结衣| 亚洲精品国产精品国自产观看浪潮| 久久精品亚洲一区二区| 9国产精品视频| 国产日韩精品久久久| 欧美日韩一级大片网址| 久久伊人一区二区| 好吊成人免视频| 葵司免费一区二区三区四区五区| 欧美日韩高清免费| 一本久久a久久免费精品不卡| 宅男66日本亚洲欧美视频| 狠狠色狠狠色综合日日五| 国产精品亚洲аv天堂网| 欧美二区在线| 国产精品久久一区主播| 亚洲一区二区三区精品在线观看| 精品999成人| 欧美视频日韩视频| 一区二区三区成人精品| 欧美劲爆第一页| 国产亚洲人成网站在线观看| 国产有码一区二区| 国产一区二区| 久久久久国产精品午夜一区| 亚洲欧美成人综合| 国产日韩欧美精品综合| 在线日韩欧美| 亚洲精品在线免费| 麻豆成人在线观看| 欧美高清在线一区二区| 欧美日韩色一区| 亚洲一区二区三区视频播放| 夜夜夜久久久| 欧美久久视频| 欧美日韩亚洲综合在线| 亚洲乱码日产精品bd| 久久精品久久综合| 在线欧美福利| 国产午夜精品视频免费不卡69堂| 国产日韩欧美成人| 欧美日韩精品在线视频| 国产精品视频第一区| 欧美日韩1区2区3区| 国产三级欧美三级| 欧美aⅴ一区二区三区视频| 欧美日韩一区三区| 亚洲黄一区二区| 亚洲永久免费视频| 久久夜色精品国产欧美乱| 亚洲欧美日韩一区二区| 亚洲大胆人体视频| 久久只有精品| 中文成人激情娱乐网| 欧美影院成人| 欧美经典一区二区三区| 欧美一区二区免费视频| 宅男66日本亚洲欧美视频| 香港成人在线视频| 中文日韩在线视频| 亚洲成色最大综合在线| 亚洲欧洲精品成人久久奇米网| 亚洲第一福利社区| 午夜视黄欧洲亚洲|