日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫COMP528、代做 Python ,java 編程

時間:2023-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman
Problem. This document explains the operations in detail, so you do not need previous
knowledge. You are encouraged to start this as soon as possible. Historically, as the dead?line nears, the queue times on Barkla grow as more submissions are tested. You are also
encouraged to use your spare time in the labs to receive help, and clarify any queries you
have regarding the assignment.
1 The Travelling Salesman Problem (TSP)
The travelling salesman problem is a problem that seeks to answer the following question:
‘Given a list of vertices and the distances between each pair of vertices, what is the shortest
possible route that visits each vertex exactly once and returns to the origin vertex?’.
(a) A fully connected graph (b) The shortest route around all vertices
Figure 1: An example of the travelling salesman problem
The travelling salesman problem is an NP-hard problem, that meaning an exact solution
cannot be solved in polynomial time. However, there are polynomial solutions that can
be used which give an approximation of the shortest route between all vertices. In this
assignment you are asked to implement 2 of these.
1.1 Terminology
We will call each point on the graph the vertex. There are 6 vertices in Figure 1.
We will call each connection between vertices the edge. There are 15 edges in Figure 1.z
We will call two vertices connected if they have an edge between them.
The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is
(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.
A partial tour is a tour that has not yet visited all the vertices.
202**024 1
COMP528
2 The solutions
2.1 Preparation of Solution
You are given a number of coordinate files with this format:
x, y
4.81263062**6921, 8.3**19930253777
2.**156816804616, 0.39593575612759
1.13649642931556, 2.2**59458630845
4.4**7**99682118, 2.9749120444**06
9.8****616851393, 9.107****070**
Figure 2: Format of a coord file
Each line is a coordinate for a vertex, with the x and y coordinate being separated by a
comma. You will need to convert this into a distance matrix.
0.000000 8.177698 7.099481 5.381919 5.0870**
8.177698 0.000000 2.577029 3.029315 11.138848
7.099481 2.577029 0.000000 3.426826 11.068045
5.381919 3.029315 3.426826 0.000000 8.139637
5.0870** 11.138848 11.068045 8.139637 0.000000
Figure 3: A distance matrix for Figure 2
To convert the coordinates to a distance matrix, you will need make use of the euclidean
distance formula.
d =
q (xi ? xj )
2 + (yi ? yj )
2
(1)
Figure 4: The euclidean distance formula
Where: d is the distance between 2 vertices vi and vj
, xi and yi are the coordinates of the
vertex vi
, and xj and yj are the coordinates of the vertex vj
.
202**024 2
COMP528
2.2 Cheapest Insertion
The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it looks for a vertex that hasn’t been visited, and inserts it between two connected
vertices in the tour, such that the cost of inserting it between the two connected vertices is
minimal.
These steps can be followed to implement the cheapest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always
pick the lowest index or indices.
1. Start off with a vertex vi
.
Figure 5: Step 1 of Cheapest Insertion
2. Find a vertex vj such that the dist(vi
, vj ) is minimal, and create a partial tour (vi
, vj
, vi)
Figure 6: Step 2 of Cheapest Insertion
3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and
vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +
dist(vn+1, vk) ? dist(vn, vn+1) is minimal.
202**024 3
COMP528
Figure 7: Step 3 of Cheapest Insertion
4. Repeat step 3 until all vertices have been visited, and are in the tour.
Figure 8: Step 4 of Cheapest Insertion
Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11
2.3 Farthest Insertion
The farthest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it checks for the farthest vertex not visited from any vertex within the partial tour, and
then inserts it between two connected vertices in the partial tour where the cost of inserting
it between the two connected vertices is minimal.
202**024 4
COMP528
These steps can be followed to implement the farthest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always
pick the lowest index(indices).
1. Start off with a vertex vi
.
Figure 10: Step 1 of Farthest Insertion
2. Find a vertex vj such that dist(vi
, vj ) is maximal, and create a partial tour (vi
, vj
, vi).
Figure 11: Step 2 of Farthest Insertion
3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an
unvisited vertex vk such that dist(vn, vk) is maximal.
Figure 12: Step 3 of Farthest Insertion
202**024 5
COMP528
4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is
a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) ? dist(vn, vn+1) is
minimal.
Figure 13: Step 4 of Farthest Insertion
5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.
Figure 14: Step 3(2) of Farthest Insertion
Figure 15: Step 4(2) of Farthest Insertion
202**024 6
COMP528
Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11
3 Running your programs
Your program should be able to be ran like so:
./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >
Therefore, your program should accept a coordinate file, and an output file as arguments.
Note that C considers the first argument as the program executable.
Both implementations should read a coordinate file, run either cheapest insertion or farthest
insertion, and write the tour to the output file.
3.1 Provided Code
You are provided with code that can read the coordinate input from a file, and write the
final tour to a file. This is located in the file coordReader.c. You will need to include this
file when compiling your programs.
The function readNumOfCoords() takes a filename as a parameter and returns the number
of coordinates in the given file as an integer.
The function readCoords() takes the filename and the number of coordinates as parameters,
and returns the coordinates from a file and stores it in a two-dimensional array of doubles,
where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y
coordinate for the ith coordinate.
The function writeTourToFile() takes the tour, the tour length, and the output filename
as parameters, and writes the tour to the given file.
202**02**
University of Liverpool Continuous Assessment 1 COMP528
4 Instructions
? Implement a serial solution for the cheapest insertion and the farthest insertion. Name
these: cInsertion.c, fInsertion.c.
? Implement a parallel solution, using OpenMP, for the cheapest insertion and the far?thest insertion. Name these: ompcInsertion.c, ompfInsertion.c.
? Create a Makefile and call it ”Makefile” which performs as the list states below. With?out the Makefile, your code will not grade on CodeGrade (see more in section 5.1).
– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU com?piler
– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler
– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the
GNU compiler
– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the
GNU compiler
– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with
the Intel compiler
– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel
compiler.
? Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording
the time it takes to solve each one. Record the start time after you read from the
coordinates file, and the end time before you write to the output file. Do all testing
with the large data file.
? Plot a speedup plot with the speedup on the y-axis and the number of threads on the
x-axis for each parallel solution.
? Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of
threads on the x-axis for each parallel solution.
? Write a report that, for each solution, using no more than 1 page per solution,
describes: your serial version, and your parallelisation strategy
? In your report, include: the speedup and parallel efficiency plots, how you conducted
each measurement and calculation to plot these, and sreenshots of you compiling and
running your program. These do not contribute to the page limit
202**024 8
COMP528
? Your final submission should be uploaded onto CodeGrade. The files you
upload should be:
– Makefile
– cInsertion.c
– fInsertion.c
– ompcInsertion.c
– ompfInsertion.c
– report.pdf
5 Hints
You can also parallelise the conversion of the coordinates to the distance matrix.
When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...
int ? o n e d a r ra y = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
For a 2-D array:
int ?? twod a r ra y = ( int ??) malloc ( numOfElements ? s i z e o f ( int ? ) ) ;
for ( int i = 0 ; i < numOfElements ; i ++){
twod a r ra y [ i ] = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
}
5.1 Makefile
You are instructed to use a MakeFile to compile the code in any way you like. An example
of how to use a MakeFile can be used here:
{make command } : { t a r g e t f i l e s }
{compile command}
c i : c I n s e r t i o n . c coordReader . c
gcc c I n s e r t i o n . c coordReader . c ?o c i . exe ?lm
Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,
the compile command is automatically executed. It is worth noting, the compile command
must be indented. The target files are the files that must be present for the make command
to execute.
202**024 9
COMP528
6 Marking scheme
1 Code that compiles without errors or warnings 15%
2 Same numerical results for test cases 20%
3 Speedup plot 10%
4 Parallel Efficiency Plot 10%
5 Parallel efficiency up to ** threads 15%
6 Speed of program 10%
11 Clean code and comments 10%
12 Report 10%
Table 1: Marking scheme
7 Deadline
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:4CCS1CS1代做、代寫c/c++,Python程序
  • 下一篇:代做CHC6089、代寫 java/c++程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲精品综合久久中文字幕| 伊人成人网在线看| 欧美日韩成人一区| 韩日成人在线| 欧美jizzhd精品欧美巨大免费| 亚洲伊人一本大道中文字幕| 国产精品欧美日韩| 国产综合欧美| 亚洲在线成人| 欲色影视综合吧| 欧美三区美女| 宅男噜噜噜66国产日韩在线观看| 在线视频欧美日韩精品| 久久久天天操| 亚洲免费视频一区二区| 久久国产婷婷国产香蕉| 亚洲网站在线观看| 一本色道久久综合亚洲91| 久久国产加勒比精品无码| 日韩视频在线永久播放| 国产亚洲综合精品| 欧美日韩一区二区免费在线观看| 日韩视频免费观看高清在线视频| 久久精品1区| 一区二区三区精品视频| 欧美3dxxxxhd| 老司机精品福利视频| 国产有码在线一区二区视频| 性久久久久久久久| 欧美喷水视频| 亚洲欧美日韩一区二区| 国内精品久久久久久久果冻传媒| 欧美日本中文字幕| 国产精品久久久久久五月尺| 亚洲精品一区二区三区福利| 亚洲一区二区在线观看视频| 久久伊伊香蕉| 伊大人香蕉综合8在线视| 在线观看不卡av| 国产乱码精品一区二区三| 久久人人97超碰国产公开结果| 夜夜爽夜夜爽精品视频| 国产毛片久久| 亚洲美女少妇无套啪啪呻吟| 久久久午夜电影| 欧美午夜精品电影| 一本色道久久综合狠狠躁的推荐| 老司机精品视频一区二区三区| 亚洲国产成人久久综合| 久久久久天天天天| 国产精品高潮久久| 国产精品天美传媒入口| 欧美精品1区2区| 99精品欧美一区二区三区综合在线| 欧美日韩一区二区欧美激情| 国产一区二区三区黄视频| 欧美日本在线播放| 影音先锋亚洲精品| 欧美亚洲综合网| 在线观看国产精品淫| 精品粉嫩aⅴ一区二区三区四区| 欧美日韩另类丝袜其他| 欧美久久久久久久久| 欧美在线观看日本一区| 久久婷婷蜜乳一本欲蜜臀| 91久久综合亚洲鲁鲁五月天| 亚洲欧美日韩在线高清直播| 可以免费看不卡的av网站| 亚洲国产精品久久久久| 99riav1国产精品视频| 在线一区二区三区四区| 欧美一区二区三区在线视频| 一区二区免费看| 欧美aa在线视频| 欧美巨乳波霸| 国产毛片久久| 亚洲人成绝费网站色www| 欧美日韩1区2区3区| 久久久青草婷婷精品综合日韩| 欧美美女bb生活片| 欧美激情一区二区在线| 夜夜嗨网站十八久久| 女人色偷偷aa久久天堂| 亚洲清纯自拍| 亚洲蜜桃精久久久久久久| 欧美日韩少妇| 久热精品视频在线免费观看| 亚洲午夜日本在线观看| 国产精品亚洲综合色区韩国| 91久久在线观看| 欧美日韩另类丝袜其他| 亚洲人成网站精品片在线观看| 久久久之久亚州精品露出| 久久久精品国产一区二区三区| 一区二区三区精品视频在线观看| 性感少妇一区| 91久久在线视频| 欧美一区二区三区在线免费观看| 国产精品www994| 欧美日韩国产一中文字不卡| 久久综合伊人77777| 亚洲国产精品毛片| 久久精品国产v日韩v亚洲| 性欧美超级视频| 欧美日韩一区二区免费视频| 久久精品视频在线播放| 国产精品一区二区久久久| 午夜久久资源| 亚洲国产黄色片| 美女日韩在线中文字幕| 欧美性大战久久久久| 国产一区在线免费观看| 亚洲第一久久影院| 国语自产精品视频在线看抢先版结局| 亚洲福利电影| 亚洲欧美日韩精品久久亚洲区| 国产精品狼人久久影院观看方式| 国产精品久久久久天堂| 欧美日韩免费区域视频在线观看| 亚洲黄色尤物视频| 99精品国产热久久91蜜凸| 好吊妞这里只有精品| 中文高清一区| 国产色爱av资源综合区| 一区二区三区精品在线| 一区二区三区在线观看欧美| 欧美视频在线一区二区三区| 免费视频最近日韩| 欧美凹凸一区二区三区视频| 国产精品久久波多野结衣| 亚洲高清视频中文字幕| 欧美揉bbbbb揉bbbbb| 在线成人免费视频| 亚洲天堂激情| 亚洲国产精品高清久久久| 欧美午夜精品久久久久久孕妇| 一区二区三区久久久| 免播放器亚洲一区| 欧美激情a∨在线视频播放| 久久青草福利网站| 国产日韩在线看片| 久久一区视频| 欧美另类综合| 亚洲欧美精品中文字幕在线| 亚洲国产视频一区| 亚洲欧美日韩精品久久久久| 亚洲欧美一区二区三区极速播放| 久久在线视频| 久久久久这里只有精品| 欧美区亚洲区| 久久综合久久美利坚合众国| 黄色一区二区在线观看| 狠狠噜噜久久| 国产精品久久久久aaaa九色| 国产精品任我爽爆在线播放| 欧美三级黄美女| 久久精品二区| 久久精品亚洲一区二区三区浴池| 亚洲国产成人精品久久| 国产精品一区二区三区久久久| 亚洲每日在线| 亚洲一区二区三区午夜| 国产精品成人久久久久| 亚洲嫩草精品久久|