日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫COMP9021object-oriented Python  程序
代寫COMP9021object-oriented Python  程序

時間:2025-11-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assignment 2
COMP9021, Trimester 3, 2025
1 General matters
1.1 Aim
The purpose of the assignment is to:
• develop object-oriented Python programs with proper exception handling;
• parse and analyse combinatorial structures;
• generate TikZ/LaTeX diagrams programmatically;
• handle both small and complex structures efficiently.
1.2 Submission
Your program should be stored in a file named arches.py, optionally together with additional files. After
developing and testing your program, upload it via Ed (unless you worked directly in Ed). Assignments
can be submitted multiple times; only the last submission will be graded. Your assignment is due on
November 24 at 11:59am.
1.3 Assessment
The assignment is worth 13 marks and will be tested against multiple inputs. For each test, the au tomarking script allows your program to run for 30 seconds.
Assignments may be submitted up to 5 days after the deadline. The maximum mark decreases by 5% for
each full late day, up to a maximum of five days. For example, if students A and B submit assignments
originally worth 12 and 11 marks, respectively, two days late (i.e., more than 24 hours but no more than
48 hours late), the maximum mark obtainable is 11.7. Therefore, A receives min(11.7, 12) = 11.7 and B
receives min(11.7, 11) = 11.
Your program will generate a number of .tex files. These can be given as arguments to pdflatex to
produce PDF files. Only the .tex files will be used to assess your work, but generating the PDFs should
still give you a sense of satisfaction. The outputs of your programs must exactly match the expected
outputs. You are required to use the diff command to identity any differences between
the .tex files generated by your program and the provided reference .tex files. You are
responsible for any failed tests resulting from formatting discrepancies that diff would have
detected.
1.4 Reminder on plagiarism policy
You are encouraged to discuss strategies for solving the assignment with others; however, discussions
must focus on algorithms, not code. You must implement your solution independently. Submissions are
routinely scanned for similarities that arise from copying, modifying others’ work, or collaborating too
closely on a single implementation. Severe penalties apply.
1
2 Open Meanders
2.1 Background
An open meander is a combinatorial structure represented as a non-self-intersecting curve that crosses a
horizontal line of points, forming arches above and below the line. They can be described by permutations
with specific constraints.
Formally, let (a1, a2, . . . , an) be a permutation of {1,…, n} with n ≥ 2. Each integer corresponds to a
distinct point on a fixed horizontal line. The permutation defines a sequence of arches as follows:
• The first arch is an upper arch, drawn above the line.
• Subsequent arches alternate between upper and lower positions, forming a valid open meander.
• Each arch connects two consecutive points ai and ai+1 in the permutation. The orientation of each
arch depends on the relative order of these points:
– An arch is drawn from left to right if ai < ai+1.
– An arch is drawn from right to left if ai > ai+1.
• Arches on the same side do not intersect.
The collection of upper and lower arches can be represented symbolically using extended Dyck words—
one for each side of the line:
• ( corresponds to the left endpoint of an arch.
• ) corresponds to the right endpoint of an arch.
• 1 represents an end of the curve (a free endpoint) that lies on that side.
The position of the endpoints depends on the parity of n:
• For even n, both ends of the curve lie below the line.
• For odd n, one end lies above and the other below the line.
Each extended Dyck word therefore encodes the complete structure of the arches on its respective side,
though only together do the two sides represent the full open meander.
2.2 Examples
For a first example, consider the permutation (2, 3, 1, 4) and the corresponding generated diagram open_me anders_1.pdf.
• Upper arches extended Dyck word: (())
• Lower arches extended Dyck word: (1)1
For a second example, consider the permutation (1, 10, 9, 4, 3, 2, 5, 8, 7, 6) and the corresponding generated
diagram open_meanders_2.pdf.
2
• Upper arches extended Dyck word: (()((())))
• Lower arches extended Dyck word: 1(())1()()
For a third example, consider the permutation (5, 4, 3, 2, 6, 1, 7, 8, 13, 9, 10, 11, 12) and the corresponding
generated diagram open_meanders_3.pdf.
• Upper arches extended Dyck word: (()())()(()1)
• Lower arches extended Dyck word: ((()1))(()())
2.3 Requirements
Implement in arches.py a class OpenMeanderError(Exception) and a class OpenMeander.
Objects of type OpenMeander are created with OpenMeander(a_1, a_2, ..., a_n), where the arguments
form a permutation of {1,…, n} for some n ≥ 2. You may assume that all arguments are integers.
• If the arguments do not form a permutation of {1,…, n} for some n ≥ 2, raise
OpenMeanderError('Not a permutation of 1, ..., n for some n ≥ 2').
• If they do not define a valid open meander, raise
OpenMeanderError('Does not define an open meander').
Implement in OpenMeander three attributes:
• extended_dyck_word_for_upper_arches, a string representing the upper arches;
• extended_dyck_word_for_lower_arches, a string representing the lower arches;
• draw(filename, scale=1), a method that generates a TikZ/LaTeX file drawing the open meander.
No error checking is required in the implementation of draw(filename, scale=1). You may assume that
filename is a valid string specifying a writable file name, and that scale is an integer or floating-point
number (typically chosen so that the resulting picture fits on a page).
An example interaction is shown in open_meanders.pdf.
Carefully study the three example .tex files. Note that the horizontal baseline extends one unit beyond
each end of the curve. Also note that the scale common to x and y, as well as the values for radius, are
displayed as floating-point numbers with a single digit after the decimal point. The length of the ends of
strings is computed as half of the scale of x and y, and is also displayed as a floating-point number with
a single digit after the decimal point.
3 Dyck Words and Arch Diagrams
3.1 Background
A Dyck word is a balanced string of parentheses representing a system of nested arches above a horizontal
line. The depth of an arch is the number of arches it is nested within, providing a way to analyse the
hierarchical structure.
3
For example, the Dyck word (()(()(()))) contains arches of depth 0, 1, 2, and 3. Dyck words can be
visualised as arches drawn above a horizontal line, with nesting reflected in the vertical stacking of arches.
Unlike open meanders, Dyck words involve only one side of arches (above the line) and do not include
endpoints represented by 1. They provide a simplified context for studying nesting depth and arch
diagrams, and arches can optionally be visually distinguished by color according to their depth.
When colouring is applied, the following sequence is used: Red, Orange, Goldenrod, Yellow, LimeGreen,
Green, Cyan, SkyBlue, Blue, Purple. If the maximum depth exceeds 9, the sequence wraps around. For
example, depth 10 would use Red again, depth 11 Orange, etc.
3.2 Examples
For a first example, consider the Dyck word (((((((((((((()))))))))))))) and the corresponding
generated diagrams, drawn_dyck_word_1.pdf and coloured_dyck_word_1.pdf.
• There is 1 arch of depth 0.
• There is 1 arch of depth 1.
• There is 1 arch of depth 2.
• There is 1 arch of depth 3.
• There is 1 arch of depth 4.
• There is 1 arch of depth 5.
• There is 1 arch of depth 6.
• There is 1 arch of depth 7.
• There is 1 arch of depth 8.
• There is 1 arch of depth 9.
• There is 1 arch of depth 10.
• There is 1 arch of depth 11.
• There is 1 arch of depth 12.
• There is 1 arch of depth 13.
For a second example, consider the Dyck word (()(()(()))) and the corresponding generated diagrams,
drawn_dyck_word_2.pdf and coloured_dyck_word_2.pdf.
• There are 3 arches of depth 0.
• There is 1 arch of depth 1.
• There is 1 arch of depth 2.
• There is 1 arch of depth 3.
For a third example, consider the Dyck word ((()())(()(()()))) and the corresponding generated
diagrams, drawn_dyck_word_3.pdf and coloured_dyck_word_3.pdf.
4
• There are 5 arches of depth 0.
• There are 2 arches of depth 1.
• There is 1 arch of depth 2.
• There is 1 arch of depth 3.
For a fourth example, consider the Dyck word ((()(()())(()(()(())))((()()))()(()()))) and the
corresponding generated diagrams, drawn_dyck_word_4.pdf and coloured_dyck_word_4.pdf.
• There are 11 arches of depth 0.
• There are 4 arches of depth 1.
• There are 2 arches of depth 2.
• There is 1 arch of depth 3.
• There is 1 arch of depth 4.
• There is 1 arch of depth 5.
3.3 Requirements
Implement in arches.py a class DyckWordError(Exception) and a class DyckWord.
Objects of type DyckWord are created with DyckWord(s), where the argument s is a nonempty string of
parentheses. You may assume that the argument is a string.
• If the argument is the empty string, raise
DyckWordError('Expression should not be empty').
• Otherwise, if the argument contains characters other than parentheses, raise
DyckWordError("Expression can only contain '(' and ')'").
• Otherwise, if the string is not balanced, raise
DyckWordError('Unbalanced parentheses in expression').
Implement in DyckWord three attributes:
• report_on_depths(), a method that outputs the number of arches at each depth, ordered from
smallest to largest depth;
• draw_arches(filename, scale=1), a method that generates a TikZ/LaTeX file drawing the arches;
• colour_arches(filename, scale=1), a method that generates a TikZ/LaTeX file drawing the
arches coloured according to their depth.
5
No error checking is required in the implementation of both methods. You may assume that filename
is a valid string specifying a writable file name, and that scale is an integer or floating-point number
(typically chosen so that the resulting picture fits on a page).
An example interaction is shown in dyck_words.pdf.
Carefully study the eight example .tex files (four for drawing arches, four for colouring arches). Note
that the horizontal baseline extends one unit beyond the leftmost and rightmost arches. Note that the
scale common to x and y is displayed as a floating-point number with a single digit after the decimal
point. Arches are drawn from the leftmost left end to the rightmost left end. Arches are coloured
from largest depth to smallest depth, and for arches of the same depth, from leftmost left end to
rightmost left end.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP3020J encryptors and decryptors 程序&#160;
  • 下一篇:代寫comp3211程序代做 &#160;IoT Framework&#160;
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久这里只精品最新地址| 国产亚洲aⅴaaaaaa毛片| 一本色道**综合亚洲精品蜜桃冫| 国产精品乱子久久久久| 国产精品青草综合久久久久99| 欧美四级电影网站| 亚洲国产综合在线看不卡| 欧美大成色www永久网站婷| 亚洲精品国产精品久久清纯直播| 久久夜色精品国产噜噜av| 欧美无乱码久久久免费午夜一区| 一区二区欧美在线观看| 亚洲欧美中文字幕| 国产一区二区三区在线观看网站| 亚洲精品一级| 亚洲第一偷拍| 欧美 日韩 国产精品免费观看| 一区二区三区精品视频| 久久久97精品| 亚洲资源在线观看| 亚洲欧美成人一区二区在线电影| 久久精品一区中文字幕| 国产精品入口麻豆原神| 日韩亚洲国产欧美| 久久国产精品色婷婷| 欧美日韩在线一区| 在线综合亚洲欧美在线视频| 久久亚洲春色中文字幕久久久| 亚洲福利视频专区| 欧美成人午夜免费视在线看片| 模特精品裸拍一区| 亚洲欧美日韩国产精品| 欧美成人福利视频| 最新国产精品拍自在线播放| 国产乱码精品一区二区三| 欧美一区2区视频在线观看| 欧美日韩高清免费| 99在线精品观看| 国产精品电影网站| 欧美日韩国产成人高清视频| 日韩亚洲欧美一区| 国产精品久久久久9999高清| 国产乱码精品一区二区三区五月婷| 含羞草久久爱69一区| 欧美久色视频| 欧美有码在线观看视频| 欧美系列亚洲系列| 亚洲一区二区视频| 亚洲色图自拍| 国产女人水真多18毛片18精品视频| 国产精品拍天天在线| 久久爱另类一区二区小说| 在线成人激情黄色| 国产精品对白刺激久久久| 美女脱光内衣内裤视频久久影院| 国产精品白丝av嫩草影院| 欧美成人午夜激情视频| 狠狠狠色丁香婷婷综合激情| 亚洲免费视频在线观看| 欧美亚洲尤物久久| 亚洲丝袜av一区| 欧美色一级片| 欧美第一黄网免费网站| 欧美久久99| 亚洲一二三四久久| 中文国产一区| 欧美一区亚洲一区| 亚洲欧洲视频在线| 国产精品成人一区二区| 国产曰批免费观看久久久| 欧美激情一级片一区二区| 国产亚洲观看| 国产精品日韩欧美综合| 亚洲伦理在线观看| 亚洲第一网站| 影音先锋久久精品| 国产精品少妇自拍| 亚洲一区图片| 欧美一区亚洲二区| 99国产精品久久久久久久成人热| 久久九九热免费视频| 欧美性大战xxxxx久久久| av成人激情| 亚洲一区二区三区在线视频| 国产精品久久久久久久久免费桃花| 欧美日韩国产综合一区二区| 亚洲国产精品成人综合色在线婷婷| 亚洲日本成人网| 亚洲国产婷婷| 国产精品男gay被猛男狂揉视频| 欧美巨乳在线| 久久婷婷一区| 亚洲字幕在线观看| 中日韩视频在线观看| 亚洲欧美成人在线| 日韩网站在线| 国产欧美精品在线观看| 一区二区三欧美| 久久久亚洲国产美女国产盗摄| 蜜桃av噜噜一区| 亚洲精品1区2区| 亚洲国产精品第一区二区| 欧美日韩在线第一页| 亚洲一区二区三区四区中文| 麻豆视频一区二区| 国产精品夜夜夜| 中文在线资源观看视频网站免费不卡| 国产日本亚洲高清| 国产欧美日韩不卡免费| 国产精品日日摸夜夜摸av| 欧美激情精品久久久久久久变态| 欧美日一区二区在线观看| 欧美精品乱码久久久久久按摩| 久久久久99| 亚洲第一天堂无码专区| 欧美香蕉大胸在线视频观看| 久久这里只有精品视频首页| 女仆av观看一区| 久久五月婷婷丁香社区| 亚洲一区二区三区视频播放| 久久噜噜噜精品国产亚洲综合| 欧美一区午夜精品| 欧美成人免费在线视频| 亚洲精品在线电影| 国产精品日韩精品| 欧美精品福利在线| 老妇喷水一区二区三区| 亚洲伦理精品| 精品动漫3d一区二区三区免费版| 亚洲精选视频免费看| 黄色精品一区二区| 国产精品wwwwww| 久久精品日产第一区二区三区| 亚洲免费婷婷| 亚洲日本无吗高清不卡| 亚洲欧美日韩国产成人| 欧美色播在线播放| 国内精品伊人久久久久av影院| 欧美激情视频给我| 国产精品伦子伦免费视频| 香蕉久久精品日日躁夜夜躁| 欧美怡红院视频一区二区三区| 欧美日本不卡高清| 一个人看的www久久| 欧美国产日韩在线| 久久精品五月婷婷| 韩国一区二区在线观看| 一区二区免费看| 久久精品国产96久久久香蕉| 亚洲免费观看| 欧美日韩在线播放一区二区| 国内久久精品视频| 久久久午夜视频| 国产精品视频福利| 日韩性生活视频| 日韩视频―中文字幕| av成人老司机| 欧美激情小视频| 亚洲日韩中文字幕在线播放| 国产精品高清网站| 欧美激情亚洲综合一区| 在线看成人片| 欧美精品一区二区三区蜜臀| 日韩午夜视频在线观看|