日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

BISM3206代做、代寫Python編程語言
BISM3206代做、代寫Python編程語言

時間:2025-06-04  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


O-BISM3206 ver or Under Asking -BISM3206

Classifying Property

Price Outcomes in the

Australian Market

  
BISM3206 Assignment

2025 S1 – Assignment

Context

The Australian real estate market is one of the most dynamic and competitive in the world, offering a

wide range of properties to both buyers and sellers. For homeowners looking to sell, setting the right

price is a critical, and often emotional, decision. After all, property transactions are among the most

significant financial events in a person's life.

Sellers typically set a listing price based on what they believe their home is worth and what the market

might bear. But things don’t always go as planned. Some properties attract intense buyer interest and

sell for more than the asking price. Others fall short, forcing the seller to accept less than they’d hoped.

If sellers had a way to estimate in advance whether their listed price is likely to be exceeded or undercut,

they could make more informed pricing decisions, better manage expectations, and potentially

maximize their return.

In this assignment, your task is to build a binary classification model that predicts whether a property

will be sold at a higher or lower price than the advertised price set by the seller.

Target Variable

The target variable price_outcome indicates whether a property was sold at a higher, equal or lower

price compared to the listing price.

The values in the price_outcome column are:

 Higher: Sold price is greater than the listed price

 Equal: Sold price is the same as the listed price

 Lower: Sold price is equal to or less than the listed price

This is a binary classification problem; therefore, you should not include any data where the target

value is ‘Equal’. Your model should learn to predict this outcome using the available features of each

property outlined below.

Dataset

You are provided with a dataset of 6,957 recently sold properties, between February 2022 and February

2023. The predictor variables are:

1. property_address: the address of the property

2. property_suburb : The suburb the property resides in

3. property_state : The state which the property resides in

4. listing_description: The description of the house provided on the listing

2025 S1 – Assignment

5. listed_date: The date the property was listed for sale

6. listed_price: The 代寫BISM3206 ver or Under Asking -BISM3206price the property was listed for

7. days_on_market: The number of days the property was on the market

8. number_of_beds: The number of bedrooms on the property

9. number_of_baths: The number of bathrooms on the property

10. number_of_parks: The number of parking spots on the property

11. property_size: The size of the property in square meters

12. property_classification: The type of property (House/Unit/Land)

13. property_sub_classification: The sub-type of the property

14. suburb_days_on_market: The average days in market that a property is on sale for in a suburb

15. suburb_median_price: The average median property price in a suburb

  
Deliverables

You must submit the following:

1. A written report (via TurnItIn).

2. A Jupyter Notebook (via the Assignment Submission link).

Your report may be structured as:

 Four main sections: a) Introduction, b) Model Building, c) Model Evaluation, d) Findings &

Conclusion, or

 Three main sections: 1) Introduction, 2) Model Building & Evaluation, 3) Findings &

Conclusion

Both structures are acceptable.

Visuals & Output

 You may include up to 8 charts or tables in your report.

 All visuals must be supported by the analysis in your Jupyter Notebook.

 Your notebook must run without errors — only analysis up to the last successfully run cell will

be marked.

 Do not edit the original Assignment_Data.xlsx file before importing.

Formatting and professionalism

 Maximum 1500 words (+/- 10%) – including title page, charts and tables.

 Use formal language and full sentences (no bullet points).

 Times New Roman, 12pt font, single-spaced.

 No appendices allowed.

 Reports can be written in first person if preferred.

Submission

Submit two files with the following naming convention:

StudentID.pdf and StudentID.ipynb

 Written report: via TurnItIn (PDF or DOCX format only)

2025 S1 – Assignment

 Jupyter Notebook: via Assignment Submission link

Example: If your student ID is 12345678, submit:

 12345678.pdf

 12345678.ipynb

Do not zip your files.

  
Note on Academic Integrity

This is an individual assignment. You are encouraged to discuss ideas with your peers but must submit

your own work. Suspected plagiarism or collusion will be treated in line with university policy.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:宜卡花唄官網客服電話全面升級,宜卡花唄以AI技術重塑金融服務體驗新標桿
  • 下一篇:代做159.342 、代寫Operating Systems 編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美日韩精品二区| 国产精品一区一区| 国产亚洲一级| 蘑菇福利视频一区播放| 欧美日韩久久久久久| 亚洲男女自偷自拍图片另类| 欧美日韩在线一区二区三区| 欧美三日本三级三级在线播放| 久久精品av麻豆的观看方式| 亚洲高清视频的网址| 欧美中文字幕第一页| 久久亚洲综合色| 老司机凹凸av亚洲导航| 欧美成人dvd在线视频| 欧美高清视频一区二区| 亚洲精品无人区| 国产日韩精品视频一区二区三区| 欧美日韩国产色站一区二区三区| 亚洲高清视频的网址| 亚洲人成人一区二区三区| 亚洲免费在线视频| 国产欧美视频一区二区三区| 国产精品电影在线观看| 亚洲电影免费观看高清完整版| 免费在线观看精品| 一区二区在线观看av| 国产精品视频在线观看| 国产精品人人做人人爽人人添| 欧美喷水视频| 最新成人av网站| 校园激情久久| 国产精品二区二区三区| 91久久一区二区| 亚洲精品一区二区网址| 亚洲一级二级在线| 国产精品亚洲аv天堂网| 蜜臀a∨国产成人精品| 久久精品视频免费播放| 亚洲精品之草原avav久久| 欧美大片国产精品| 欧美日韩在线电影| 午夜精品久久久久| 欧美在线关看| 欧美日韩亚洲一区二区三区| 国产一区二区中文| 欧美精品麻豆| 国产亚洲精品久久久久动| 亚洲免费在线观看| 国产色综合久久| 亚洲成色www8888| 国产午夜精品视频免费不卡69堂| 久久av在线看| 亚洲毛片一区| 国产精品久久久久秋霞鲁丝| 欧美精品二区三区四区免费看视频| 国产人成一区二区三区影院| 黄色亚洲网站| 欧美日韩另类一区| 国产精品久久久久99| 尤物在线观看一区| 久久久久久91香蕉国产| 国产精品主播| 国产女精品视频网站免费| 久久www免费人成看片高清| 国产一区二区看久久| 国产精品久久久久久久久动漫| 国产精品女人网站| 99re视频这里只有精品| 欧美午夜久久| 国产精品扒开腿做爽爽爽软件| 国产精品羞羞答答xxdd| 亚洲欧洲av一区二区三区久久| 欧美美女操人视频| 欧美成人黄色小视频| 男女精品视频| 欧美精品18videos性欧美| 亚洲国产婷婷香蕉久久久久久| 老**午夜毛片一区二区三区| 欧美一区午夜精品| 国产精品一区二区久久国产| 欧美h视频在线| 美女爽到呻吟久久久久| 亚洲小视频在线观看| 久久一二三国产| 久久www免费人成看片高清| 国产精品丝袜久久久久久app| 国产精品av久久久久久麻豆网| 在线精品视频免费观看| 欧美日韩在线综合| 亚洲精品久久久蜜桃| 欧美激情精品| 午夜精品www| 亚洲欧美精品中文字幕在线| 性欧美精品高清| 欧美高清在线观看| 国产自产高清不卡| 欧美激情在线免费观看| 欧美日韩情趣电影| 欧美亚州在线观看| 欧美日韩国产首页在线观看| 亚洲第一在线综合网站| 久久久久久999| 韩国av一区二区三区| 日韩视频免费看| 亚洲一区二区三区四区五区黄| 亚洲伊人久久综合| 欧美在线视频全部完| 亚洲国产裸拍裸体视频在线观看乱了| 夜夜爽av福利精品导航| 国产精品www网站| 韩日成人在线| 欧美二区乱c少妇| 欧美日韩伊人| 欧美日韩精品免费观看视一区二区| 欧美在线亚洲在线| 精品99一区二区三区| 亚洲午夜精品视频| 日韩一级裸体免费视频| 亚洲欧美日韩精品久久亚洲区| 夜夜嗨av一区二区三区网页| 麻豆国产精品一区二区三区| 国产日韩在线播放| 日韩视频国产视频| 久久久久久久一区| 亚洲电影天堂av| 在线观看欧美视频| 欧美性大战xxxxx久久久| 一区二区三欧美| 老司机免费视频久久| 国内精品嫩模av私拍在线观看| 美女国产精品| 久久久久一区二区三区四区| 一本色道精品久久一区二区三区| 91久久国产精品91久久性色| 欧美激情a∨在线视频播放| 日韩一级不卡| 亚洲最新色图| 欧美中文字幕| 亚洲欧洲日韩在线| 亚洲高清视频在线| 亚洲大胆美女视频| 午夜视频久久久久久| 亚洲精品美女在线观看播放| 国产亚洲精品成人av久久ww| 免费在线成人av| 久久av在线看| 一区二区三区四区国产精品| 亚洲第一福利在线观看| 亚洲视频成人| 久久在线免费观看| 日韩一区二区精品葵司在线| 一本久久知道综合久久| 午夜精品久久| 欧美在线影院| 亚洲娇小video精品| 亚洲欧美日韩电影| 免费亚洲婷婷| 久久久久国产精品一区三寸| 欧美视频一区二区三区| 亚洲福利免费| 欧美精品www在线观看| 欧美精品 国产精品| 亚洲精品影视| 国外成人免费视频|