日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

DTS101TC代做、代寫Python語言程序
DTS101TC代做、代寫Python語言程序

時間:2025-04-09  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DTS101TC Coursework
This coursework is designed to assess your understanding of neural networks and machine learning concepts, as well as your ability to implement, analyze, and evaluate models effectively. It consists of two main components: five assignments and an image object detection project. Detailed instructions, marking criteria, and submission requirements are outlined below. AIGC tools are not allowed.

Part 1: Assignments (50 Marks)
This section includes five individual assignments, each focusing on different neural network techniques and datasets. The breakdown for each task includes marks for code execution, analysis, evaluation, and reporting quality.
Submission Requirements
Please submit your notebooks to Gradescope. Each assignment must be completed according to the instructions provided in the Python Jupyter Notebook, with all output cells saved alongside the code. You don’t need to write a report for this part. Please put all the analysis and results in your notebook.
Weekly TA checks during lab sessions and office hours are mandatory. Assignments will not be graded without TA verification.
Question 1: Digit Recognition with Neural Networks
Task: Implement a basic neural network using TensorFlow/PyTorch to train a digit recognition model on the MNIST dataset.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oTest cases: 2 marks
oReport quality (comments and formatting): 1 mark
Question 2: Logistic Regression for Flower Classification
Task: Build and implement a Logistic Regression model to classify three types of iris flowers using the dataset in sklearn.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oTest cases: 2 marks
oReport quality (comments and formatting): 1 mark

Question 3: House Price Prediction with ANN/MLP
Task: Design and implement an ANN/MLP model to predict house prices in California using the dataset in sklearn.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oTest cases: 2 marks
oReport quality (comments and formatting): 1 mark
Question 4: Stock Price Prediction with RNN
Task: Create an RNN model to predict stock prices for companies like Apple and Amazon from the Nasdaq market using the provided dataset.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oModel evaluation: 2 marks
oReport quality (comments and formatting): 1 mark
Question 5: Image Classification with CNN
Task: Develop a CNN model to classify images into 10 classes using the CIFAR-10 dataset.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oModel evaluation: 2 marks
oReport quality (comments and formatting): 1 mark

Part 2: Project (50 Marks)
The project involves building a custom image dataset and implementing an object detection neural network. This is a comprehensive task that evaluates multiple skills, from data preparation to model evaluation. 
Submission Requirements
All of your dataset, code (Python files and ipynb files) should be a package in a single ZIP file, with a PDF of your report (notebook with output cells, analysis, and answers). INCLUDE your dataset in the zip file.
Step 1: Dataset Creation (10 Marks)
Task: Collect images and use tools like Label Studio or LabelMe to create labeled datasets for object detection. You can add one more class into the provided dataset. The dataset should have up to 10 classes. Each contains at least 200 images.
Deliverable: Include the dataset in the ZIP file submission.
Mark Breakdown:
oCorrect images and labels: 6 marks
oData collection and labeling process explanation: 2 marks
oDataset information summary: 2 marks
Step 2: Data Loading and Exploration (10 Marks)
Task: Organize data into train, validation, and test sets. Display dataset statistics, such as class distributions, image shapes, and random samples with labels. Randomly plot 5 images in the training set with their corresponding labels.
Mark Breakdown:
oCorrect dataset splitting: 6 marks
oDataset statistics: 2 marks
oSample images and labels visualization: 2 marks
Step 3: Model Implementation (10 Marks)
Task: Implement an object detection model, such as YOLOv8. Include a calculation of the total number of parameters in your model. You must include calculation details.
Mark Breakdown:
oCode and comments: 6 marks
oParameter calculation details and result: 4 marks
Step 4: Model Training (10 Marks)
Task: Train the model using appropriate hyperparameters (e.g., epoch number, optimizer, learning rate). Visualize training and validation performance through graphs of loss and accuracy.
Mark Breakdown:
oCode and comments: 6 marks
oHyperparameters analysis: 2 marks
oPerformance analysis: 2 marks
Step 5: Model Evaluation and Testing (10 Marks)
Task: Evaluate the model on the test set, displaying predictions (visual result) and calculating metrics like mean Average Precision (mAP) and a confusion matrix.
Mark Breakdown:
oCode and comments: 6 marks
oPrediction results: 2 marks
oEvaluation metrics: 2 marks
Submission Guidelines
1.Assignments: Submit your Jupyter Notebooks via Gradescope. Ensure all output cells are saved and visible.
2.Project: Submit your ZIP file containing the dataset, Python files, Jupyter Notebooks, and a PDF report via Learning Mall Core.
General Notes and Policies
1.Plagiarism: Submissions must be your own work. Avoid copying from external sources without proper attribution. Sharing code is prohibited.
2.Late Submissions: Follow the university's policy on late submissions; penalties may apply.
3.Support: Utilize lab sessions and TA office hours for guidance.

Marking Criteria
Assignments
Code execution by Gradescope: 5 marks
Data and model analysis: 2 marks
Test cases or model evaluation: 2 marks
Report quality (comments and formatting): 1 mark
Project
Code (60%):
oFully functional code with clear layout and comments: 6 marks
oPartially functional code with some outputs: 4 marks
oCode that partially implements the solution but does not produce outcomes: 2 marks
oIncomplete or non-functional code: 0 marks
Analysis (40%):
oComplete and accurate answers with clear understanding: 4 marks
oPartial answers showing some understanding: 2 marks
oLimited understanding or incorrect answers:: 0 marks

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫AI3013編程、代做Python設計程序
  • 下一篇:代寫MEC 302、代做python編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        免费观看欧美在线视频的网站| 欧美喷潮久久久xxxxx| 中国成人在线视频| 国产精品久久久久久五月尺| 亚洲天堂偷拍| 国产美女在线精品免费观看| 夜夜嗨av一区二区三区四季av| 欧美xart系列在线观看| 欧美亚洲成人免费| 欧美怡红院视频| 麻豆精品视频在线观看| 欧美在线中文字幕| 国产精品你懂的| 欧美日韩1234| 亚洲欧美bt| 日韩视频一区二区| 亚洲视频香蕉人妖| 欧美日韩国产成人在线免费| 午夜在线观看免费一区| 久久精品国产96久久久香蕉| 欧美日韩国产在线| 极品中文字幕一区| 国产精品久久激情| 欧美日韩视频免费播放| 欧美bbbxxxxx| 国产亚洲高清视频| 亚洲午夜极品| 欧美深夜福利| 亚洲影院一区| 精品99一区二区| 国产伦精品一区二区三区视频孕妇| 久久九九99视频| 久久久久国内| 国内自拍亚洲| 国产精品久久影院| 国产精品一区二区三区成人| 欧美精品成人在线| 亚洲视频免费| 国语自产精品视频在线看抢先版结局| 久久精品国产久精国产思思| 国产综合精品一区| 亚洲色无码播放| 国产综合色精品一区二区三区| 国模精品娜娜一二三区| 在线视频精品一区| 欧美高清hd18日本| 国产日韩欧美电影在线观看| 欧美日韩在线不卡| 亚洲国产日韩综合一区| 欧美成年视频| 久久久噜噜噜久久狠狠50岁| 久久久久欧美| 亚洲精品精选| 在线看视频不卡| 黄色成人在线免费| 久久夜色精品国产噜噜av| 欧美另类综合| 国产一区二区丝袜高跟鞋图片| 亚洲福利国产| 国产一区视频在线观看免费| 欧美精品精品一区| 亚洲欧美日韩国产成人精品影院| 久久精品最新地址| 狠久久av成人天堂| 欧美啪啪一区| 国产情侣一区| 免费人成网站在线观看欧美高清| 在线看国产一区| 国产精品激情电影| 欧美日韩在线视频一区二区| 亚洲国产视频直播| 亚洲精品日韩激情在线电影| 国产色综合久久| 国产一区二区三区成人欧美日韩在线观看| 亚洲一区二区精品在线观看| 狠狠色丁香婷婷综合| 亚洲天堂成人| 欧美成人午夜影院| 亚洲欧美日韩系列| 欧美国产专区| 久久久久久亚洲精品杨幂换脸| 免费短视频成人日韩| 国产综合色产在线精品| 性一交一乱一区二区洋洋av| 亚洲一区二区三区四区视频| 久久精品成人一区二区三区| 亚洲伊人色欲综合网| 国产精品国产三级国产| 亚洲一区二区网站| 99精品热视频只有精品10| 国产在线高清精品| 亚洲丰满少妇videoshd| 国产精品久久婷婷六月丁香| 精品成人国产在线观看男人呻吟| 欧美日韩一区二区在线视频| 一区二区三区亚洲| 激情懂色av一区av二区av| 黄色亚洲免费| 黄色成人av| 国产一区二区三区精品欧美日韩一区二区三区| 亚洲欧美日韩精品久久久| 一区二区三区av| 亚洲一区二区不卡免费| 国产精品一区二区你懂得| 亚洲黄色尤物视频| 亚洲免费电影在线| 久久av二区| 亚洲精品一品区二品区三品区| 亚洲性线免费观看视频成熟| 亚洲女人天堂成人av在线| 欧美精品国产| 国产精品网站在线播放| 欧美日韩综合在线| 亚洲黄色大片| 一区免费视频| 午夜精品久久久久久久| 欧美不卡在线视频| 欧美mv日韩mv亚洲| 女人香蕉久久**毛片精品| 国产精品网站在线| 日韩一区二区电影网| 在线成人www免费观看视频| 香蕉久久夜色精品| 久久久久国产精品一区| 欧美成人一区二区三区| 亚洲精品一区中文| 欧美四级伦理在线| 久久国产乱子精品免费女| 精品盗摄一区二区三区| 在线激情影院一区| 亚洲毛片在线看| 久久国产精品99国产| 国产日韩欧美中文在线播放| 一区二区日本视频| 欧美日韩一区在线观看| 欧美中文字幕在线视频| 久久国产一区二区三区| 国产精品视频在线观看| 欧美顶级大胆免费视频| 国产日韩精品一区二区浪潮av| 精品二区视频| 黄色日韩网站| 国产精品视频yy9099| 国产精品theporn| 永久域名在线精品| 欧美日韩专区在线| 欧美精品久久久久久久免费观看| 久久精品天堂| 国产精品福利网站| 久久久久久午夜| 国产精品欧美久久久久无广告| 亚洲欧美综合国产精品一区| 亚洲天堂第二页| 在线免费日韩片| 夜夜精品视频| 亚洲线精品一区二区三区八戒| 艳妇臀荡乳欲伦亚洲一区| 久久精品国产69国产精品亚洲| 午夜精品久久久久久久蜜桃app| 亚洲女ⅴideoshd黑人| 欧美激情中文字幕一区二区| 亚洲国产婷婷香蕉久久久久久99| 国产精品久久久久9999吃药| 狠狠88综合久久久久综合网|