日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫COMP34212、代做Java/C++編程
代寫COMP34212、代做Java/C++編程

時間:2025-04-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP34212 Cognitive Robotics Angelo Cangelosi 
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Release: February 2025
Submission deadline: 27 March 2025, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the 
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and 
evaluation of deep neural networks experiments for a vision recognition task. The assignment will 
in particular address the learning outcome LO1 on the analysis of the methods and software 
technologies for robotics, and LO3 on applying different machine learning methods for intelligent 
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a 
summary discussion of various applications of DNN to different robotics domains/applications. 
Alternatively, you can focus on one robotic application, and discuss the different DNN models used 
for this application. In either case, the report should show a good understanding of the key works in 
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron 
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and 
analyse new training simulations. This will allow you to evaluate the role of different 
hyperparameter values and explain and interpret the general pattern of results to optimise the 
training for robotics (vision) applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO, not the simple MNIST) or 
robotics vision datasets (e.g. iCub World1
, RGB-D Object Dataset2
). You are also allowed to use 
other deep learning models beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to 
describe and discuss the training simulations done and their context within robotics research and 
applications. The report must also include the link to the Code/Notebook, or add the code as 
appendix (the Code Appendix is in addition to the 5 pages of the core report). Do not use AI/LLM 
models to generate your report. Demonstrate a credible analysis and discussion of your own 
simulation setup and results, not of generic CNN simulations. And demonstrate a credible, 
personalised analysis of the literature backed by cited references.
COMP34212 Cognitive Robotics Angelo Cangelosi 
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of 
citations backing your academic review and statements (marks given for 
clarity/completeness of the overview of the state of the art, with spectrum of deep learning 
methods considered in robotics; credible personalised critical analysis of the deep learning 
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with 
explanation and justification of the dataset, the network topology and the hyperparameters 
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity 
and appropriateness of the network topology; hyperparameter exploration approach; data 
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing 
simulations; include appropriate figures and tables to support the results; depth of the 
interpretation and assessment of the quality of the results (the text must clearly and 
credibly explain the data in the charts/tables); Discussion of alternative/future simulations 
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if 
code/notebook (link to external repository or as appendix) is not included.
Due Date: 27 March 2025, 18:00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:出評 開團工具
  • 下一篇:INFO20003代做、代寫SQL編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        日韩午夜激情| 欧美激情综合色综合啪啪| 欧美一区二区黄| 欧美视频你懂的| 国产日韩精品视频一区| 国产乱码精品一区二区三区忘忧草| 精品不卡在线| 亚洲高清色综合| 欧美人成在线| 亚洲影视综合| 亚洲先锋成人| 欧美亚洲尤物久久| 亚洲精品日韩激情在线电影| 国产一区 二区 三区一级| 欧美一区二区三区四区在线| 老司机午夜精品| 亚洲精品久久视频| 欧美日韩精品福利| 久久理论片午夜琪琪电影网| 亚洲日本电影在线| 欧美日产一区二区三区在线观看| 韩国av一区| 久久久综合香蕉尹人综合网| 一区二区国产日产| 亚洲欧洲免费视频| 最新中文字幕一区二区三区| 欧美午夜免费电影| 一区二区av在线| 激情六月综合| 99视频一区二区三区| 欧美国内亚洲| 先锋a资源在线看亚洲| 午夜精品久久久久久久99热浪潮| 尤妮丝一区二区裸体视频| 亚洲精品欧美日韩专区| 国产精品久久久一区二区| 久久久激情视频| 国内视频一区| 一区二区三区四区五区视频| 欧美在线你懂的| 欧美精品导航| 国产精品黄页免费高清在线观看| 亚洲视频www| 久久久久久精| 久久久久久久综合色一本| 国产欧美一区二区三区另类精品| 欧美成熟视频| 欧美日韩一区二区在线观看| 国产精品欧美久久| 亚洲人成网站影音先锋播放| 亚洲人人精品| 国产精品chinese| 亚洲国产日韩在线| 欧美激情免费观看| 99精品视频免费| 欧美激情乱人伦| 欧美人妖另类| 国产精品一级在线| 在线观看亚洲视频啊啊啊啊| 国产欧美日韩综合一区在线播放| 蘑菇福利视频一区播放| 久久一区二区三区四区五区| 亚洲国产一成人久久精品| 欧美一区二区日韩| 亚洲一区二区三区精品在线观看| 一区二区三区中文在线观看| 亚洲欧美日韩高清| 欧美韩国在线| 禁断一区二区三区在线| 欧美精品一区二区三区久久久竹菊| 久久亚洲综合色一区二区三区| 欧美日韩亚洲一区三区| 国产精品一区二区欧美| 亚洲国产精品一区二区www| 欧美日韩免费观看一区=区三区| 久久国产一区二区| 欧美大片一区| 国产日韩欧美制服另类| 欧美sm视频| 国产欧美精品日韩| 欧美激情一区二区三区全黄| 在线亚洲精品福利网址导航| 国产精品成人v| 欧美三区美女| 亚洲国产成人精品视频| 欧美日韩二区三区| 极品av少妇一区二区| 国产欧美韩日| 激情五月综合色婷婷一区二区| 欧美亚洲第一页| 一本色道久久综合狠狠躁篇的优点| 国产精品任我爽爆在线播放| 国产日韩欧美精品综合| 久久在线免费观看视频| 亚洲激情亚洲| 欧美视频在线一区| 老色批av在线精品| 国产日韩欧美高清免费| 日韩视频―中文字幕| 欧美xart系列在线观看| 国内精品模特av私拍在线观看| 一本久道久久久| 欧美成在线观看| 欧美在线91| 欧美一区二粉嫩精品国产一线天| 激情视频一区二区| 久久婷婷国产综合国色天香| 欧美一级播放| 性色一区二区三区| 韩国av一区二区三区在线观看| 亚洲国产视频一区二区| 免费观看欧美在线视频的网站| 欧美性猛交xxxx乱大交退制版| 欧美激情一区二区三区高清视频| 国内揄拍国内精品久久| 欧美日韩成人一区二区三区| 亚洲一级片在线看| 久久精品二区三区| 国产精品人人做人人爽人人添| 久久国产加勒比精品无码| 久久综合久久综合九色| 久久成人免费视频| 99国产精品国产精品久久| 亚洲视频1区| 欧美激情第1页| 久久国产福利国产秒拍| 欧美在线看片| 蜜臀av国产精品久久久久| 裸体女人亚洲精品一区| 亚洲一区二区三区精品视频| 欧美一区2区视频在线观看| 久久av一区二区三区漫画| 亚洲天堂免费在线观看视频| 欧美高清在线精品一区| 欧美激情中文字幕一区二区| 99亚洲伊人久久精品影院红桃| 午夜免费日韩视频| 在线观看日韩www视频免费| 国产一区二区观看| 99精品国产一区二区青青牛奶| 亚洲一级二级在线| 国产一区二区三区精品久久久| 午夜欧美理论片| 国产农村妇女精品| 久久久久久亚洲综合影院红桃| 国产精品视屏| 亚洲精品美女久久7777777| 美女视频网站黄色亚洲| 欧美sm视频| 欧美午夜免费影院| 亚洲人成网站在线播| 亚洲欧美日韩直播| 米奇777超碰欧美日韩亚洲| 伊人精品成人久久综合软件| 欧美大香线蕉线伊人久久国产精品| 欧美丰满高潮xxxx喷水动漫| 亚洲精品少妇网址| 蜜桃av综合| 亚洲一区二区三区中文字幕在线| 久久综合九色综合欧美狠狠| 国产美女精品| 免费在线观看日韩欧美| 国内在线观看一区二区三区| 亚洲欧美激情精品一区二区|