日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH3030、代做c/c++,Java程序
代寫MATH3030、代做c/c++,Java程序

時間:2025-03-22  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH3030: Coursework, Spring 2025
17/03/2025
• If you are a MATH4068 student, please stop reading and go and find the coursework for
MATH4068. This assessment is for MATH3030 students only.
• This coursework is ASSESSED and is worth 20% of the total module mark. It is split into two questions,
of equal weight.
• Deadline: Coursework should be submitted via the coursework submission area on the Moodle page
by Wednesday 30 April, 10am.
• Do not spend more time on this project than it merits - it is only worth 20% of the module mark.
• Format: Please submit a single pdf document. The easiest way to do this is to use R Markdown or
Quarto in R Studio. Do not submit raw markdown or R code - raw code (i.e. with no output,
plots, analysis etc) will receive a mark of 0.
• As this work is assessed, your submission must be entirely your own work (see the University’s policy
on Academic Misconduct).
• Submissions up to five working days late will be subject to a penalty of 5% of the maximum mark
per working day. Deadline extensions due to Support Plans and Extenuating Circumstances can be
requested according to School and University policies, as applicable to this module. Because of these
policies, solutions (where appropriate) and feedback cannot normally be released earlier than 10 working
days after the main cohort submission deadline.
• Report length: Your solution should not be too long. You should aim to convey the important
details in a way that is easy to follow, but not excessively long. Avoid repetition and long print-outs of
uninteresting numerical output.
• Please post any questions about the coursework on the Moodle discussion boards. This will ensure that
all students receive the same level of support. Please be careful not to ask anything on the discussion
boards that reveals any part of your solution to other students.
• I will be available to discuss the coursework at our Tuesday or Thursday sessions during the semester. I
will not be meeting students 1-1 to discuss the coursework outside of these times.
Plagiarism and Academic Misconduct For all assessed coursework it is important that you submit
your own work. Some information about plagiarism is given on the Moodle webpage.
Grading The two questions carry equal weight, and both will be marked out of 10. You will be assessed on
both the technical content (use of R, appropriate choice of method) and on the presentation and interpretation
of your results.
1
Coursework
The file UN.csv is available on Moodle, and contains data from the United Nations about 141 different
countries from 1952 to 2007. This includes the GDP per capita, the life expectancy, and the population.
Load the data into R, and extract the three different types of measurement using the commands below:
UN <- read.csv('UN.csv')
gdp <- UN[,3:14] # The GDP per capita.
years <- seq(1952, 2007,5)
colnames(gdp) <- years
rownames(gdp) <- UN[,2]
lifeExp <- UN[,15:26] # the life expectancy
colnames(lifeExp) <- years
rownames(lifeExp) <- UN[,2]
popn <- UN[,27:38] # the population size
colnames(popn) <- years
rownames(popn) <- UN[,2]
In this project, you will analyse these data using the methods we have looked at during the module.
Question 1
Exploratory data analysis
Begin by creating some basic exploratory data analysis plots, showing how the three variables (GDP, life
expectancy, population) have changed over the past 70 years. For example, you could show should how the
average life expectancy and GDP per capita for each continent has changed through time. Note that there
are many different things you could try - please pick a small number of plots which you think are most
informative.
Principal component analysis
Carry out principal component analysis of the GDP and life expectancy data. Analyse the two variable types
independently (i.e. do PCA on GDP, then on life-expectancy). Things to consider include whether you use
the sample covariance or correlation matrix, how many principal components you would choose to retain in
your analysis, and interpretation of the leading principal components.
Use your analysis to produce scatter plots of the PC scores for GDP and life expectancy, labelling the names
of the countries and colouring the data points by continent. You can also plot the first PC score for life
expectancy against the first PC score for GDP (again colouring and labelling your plot). Briefly discuss these
plots, explaining what they illustrate for particular countries.
Canonical correlation analysis
Perform CCA using log(GDP) and life expectancy as the two sets of variables. Provide a scatter plot of the
first pair of CC variables, labelling and colouring the points. What do you conclude from your canonical
correlation analysis? What has been the effect of using log(gdp) rather than gdp as used in the PCA?
Multidimensional scaling
Perform multidimensional scaling using the combined dataset of log(GDP), life expectancy, and log(popn),
i.e., using
UN.transformed <- cbind(log(UN[,3:14]), UN[,15:26], log(UN[,27:38]))
Find and plot a 2-dimensional representation of the data. As before, colour each data point by the continent
it is on. Discuss the story told by this plot in comparison with what you have found previously.
2
Question 2
Linear discriminant analysis
Use linear discriminant analysis to train a classifier to predict the continent of each country using gdp,
lifeExp, and popn from 1952-2007. Test the accuracy of your model by randomly splitting the data into test
and training sets, and calculate the predictive accuracy on the test set.
Clustering
Apply a selection of clustering methods to the GDP and life expectancy data. Choose an appropriate number
of clusters using a suitable method, and discuss your results. For example, do different methods find similar
clusters, is there a natural interpretation for the clusters etc? Note that you might want to consider scaling
the data before applying any method.
UN.scaled <- UN[,1:26]
UN.scaled[,3:26] <- scale(UN[,3:26])
Linear regression
Finally, we will look at whether the life expectancy in 2007 for each country can be predicted by a country’s
GDP over the previous 55 years. Build a model to predict the life expectancy of a country in 2007 from its
GDP values (or from log(gdp)). Explain your choice of regression method, and assess its accuracy. You
may want to compare several different regression methods, and assess whether it is better to use the raw gdp
values or log(gdp) as the predictors.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:CSC3050代做、Java/Python編程代寫
  • 下一篇:悠悠分期全國客服電話-悠悠分期24小時人工服務熱線
  • ·COMP 5076代寫、代做Python/Java程序
  • ·代寫COP3503、代做Java程序設計
  • ·COMP3340代做、代寫Python/Java程序
  • ·COM1008代做、代寫Java程序設計
  • ·MATH1053代做、Python/Java程序設計代寫
  • ·CS209A代做、Java程序設計代寫
  • ·ITC228編程代寫、代做Java程序語言
  • ·PROG2004代做、Java程序設計代寫
  • ·代寫Tic-Tac-To: Markov Decision、代做java程序語言
  • ·CP1407代做、代寫c/c++,Java程序
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产在线一区二区三区四区| 欧美成年人网站| 久久不射电影网| 亚洲永久免费观看| 国产亚洲激情视频在线| 欧美一区午夜精品| 99亚洲伊人久久精品影院红桃| 久久蜜桃精品| 一区二区三区在线视频观看| 性高湖久久久久久久久| 伊甸园精品99久久久久久| 国产精品毛片a∨一区二区三区| 国产一区二区三区久久精品| 久久女同互慰一区二区三区| 欧美一区二区日韩| 欧美精品二区三区四区免费看视频| 夜夜嗨av色综合久久久综合网| 久久久噜噜噜久久人人看| 欧美性色aⅴ视频一区日韩精品| 欧美日韩国产一区二区三区地区| 亚洲精品视频在线观看免费| 亚洲欧美日韩一区在线| 一区二区三区精品久久久| 国产精品美女久久久| 亚洲成色777777女色窝| 激情五月婷婷综合| 欧美激情aⅴ一区二区三区| 欧美激情女人20p| 亚洲观看高清完整版在线观看| 欧美性猛交xxxx乱大交退制版| 国产综合香蕉五月婷在线| 欧美一级在线亚洲天堂| 亚洲精品日韩久久| 国产精品啊啊啊| 亚洲激情网站| 午夜精品久久久久久久99水蜜桃| 韩国一区电影| 久久影视精品| 国产伦精品一区二区| 久久午夜精品| 亚洲男女自偷自拍图片另类| 国产精品一区二区a| 欧美日韩无遮挡| 亚洲精品一区二区网址| 欧美亚洲综合网| 亚洲国产欧美在线| 欧美激情导航| 怡红院精品视频在线观看极品| 欧美日韩在线视频首页| 欧美人与性禽动交情品| 久久青草欧美一区二区三区| 国产精品爽黄69| 欧美在线观看日本一区| 欧美精品一区二区精品网| 狂野欧美激情性xxxx欧美| 国产精品国产精品| 欧美色欧美亚洲高清在线视频| 好看的日韩视频| 亚洲欧美日韩一区二区在线| 在线观看三级视频欧美| 免费不卡在线观看av| 国产在线视频欧美一区二区三区| 免费精品99久久国产综合精品| 国产精品永久免费| 亚洲免费观看高清完整版在线观看熊| 国产日韩在线不卡| 国产精品久久久久av免费| 久久亚洲精品网站| 这里只有精品视频在线| 国产欧美一区二区三区久久人妖| 国产真实久久| 久久精品国产一区二区三区免费看| 国产亚洲精品综合一区91| 久久国产精彩视频| 国产精品视频| 久久精品99久久香蕉国产色戒| 亚洲一线二线三线久久久| 一区二区三区四区国产| 亚洲电影在线| 欧美大片一区二区| 欧美大片在线观看一区| 欧美午夜精品电影| 国产精品视频一区二区高潮| 日韩亚洲在线观看| 久久精品亚洲精品国产欧美kt∨| 久久久久青草大香线综合精品| 亚洲综合视频一区| 欧美视频在线观看视频极品| 欧美日韩一区二区在线观看视频| 国产日韩一区| 羞羞视频在线观看欧美| 欧美日韩日日骚| 欧美一区二区免费视频| 亚洲一区欧美二区| 国产人妖伪娘一区91| 欧美日韩亚洲一区二区| 久久久五月婷婷| 亚洲国产另类久久久精品极度| 欧美精品手机在线| 一区二区高清视频在线观看| 亚洲女女做受ⅹxx高潮| 国产婷婷97碰碰久久人人蜜臀| 亚洲一区免费视频| 亚洲高清不卡在线观看| 欧美成人精品在线观看| 国产欧美日韩专区发布| 国产亚洲精品高潮| 欧美一区二区三区视频免费播放| 欧美激情四色| 一区三区视频| 麻豆国产va免费精品高清在线| 欧美自拍偷拍午夜视频| 99精品视频免费观看视频| 亚洲第一中文字幕| 一二三区精品福利视频| 亚洲高清影视| 免费高清在线视频一区·| 尹人成人综合网| 91久久久一线二线三线品牌| 亚洲黄网站在线观看| 一本色道久久综合亚洲精品婷婷| 久久人人97超碰国产公开结果| 亚洲欧美日本国产有色| 亚洲图片激情小说| 香蕉视频成人在线观看| 欧美影院成年免费版| 亚洲一区二区在线看| 久久久水蜜桃av免费网站| 国产精品大片| 欧美日韩日韩| 欧美激情第1页| 国产精品美女久久久久久久| 欧美日产一区二区三区在线观看| 国产精品久久久久久久久久直播| 欧美精品一区二区三区很污很色的| 在线观看的日韩av| 欧美日韩国产小视频在线观看| 欧美激情五月| 国产精品热久久久久夜色精品三区| 久久亚洲捆绑美女| 国产日韩一区欧美| 暖暖成人免费视频| 一本久道综合久久精品| 激情综合电影网| 亚洲精品综合在线| 亚洲日韩欧美一区二区在线| 欧美日韩亚洲不卡| 国产精品激情偷乱一区二区∴| 欧美人交a欧美精品| 免费试看一区| 这里只有精品视频在线| 亚洲美女色禁图| 亚洲欧美成aⅴ人在线观看| 午夜欧美精品久久久久久久| 久久精品亚洲国产奇米99| 亚洲福利在线观看| 在线观看欧美日本| 国产精品xnxxcom| 狠狠久久婷婷| 国产精品v一区二区三区| 亚洲网站在线播放| 尤物yw午夜国产精品视频明星| 国产精品午夜在线观看| 一本色道久久88亚洲综合88|