日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

MATH70094代做、代寫Python語言編程
MATH70094代做、代寫Python語言編程

時間:2024-12-31  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assessment 4 MATH70094: Programming for Data Science Autumn 2024
Assessment 4
This assessment contains two questions that will test your ability to work with files and data in
R and Python, as well as how to create and package your code in these two languages. Question
1 is on R, while Question 2 is on Python. The available marks are indicated in brackets for each
question. Note that this assessment will count 50% towards the final grade for this module. This
assessment will be marked, and feedback will be provided.
Make sure that you carefully read the following sections on Background and Submission Instruc tions.
Background
In this assessment, we want to build a spam classifier to decide for a given message string if it is a
genuine message (ham) that we want to keep, or if it is not a genuine message (spam) that should be
filtered out. A message can be thought of as a random sequence of words, but since we hardly ever
see the same message twice it is common to ignore the word order, and to simply record how many
times each word appears. We therefore represent a message by a random vector X ∈ {0, 1, 2, . . . , }
p
with counts for a vocabulary of p words. The vocabulary stays fixed for all the messages.
Denote by P r(X) the probability of a specific message, let S be the event that X corresponds to
spam and let H be the complementary event that X is ham. From Bayes’ theorem the probability of
X being spam is
P r(S|X) = P r(X|S)P r(S)
P r(X)
.
Here, P r(S) is the prior probability of an arbitrary message being spam, and P r(X|S) is the
probability to see message X given that we know it is spam. Similarly, the probability of X being
ham is
P r(H|X) = P r(X|H)P r(H)
P r(X)
.
If P r(S|X) > P r(H|X), we classify the message X as spam, otherwise as ham.
To simplify the estimation of the probabilities P r(X|S) and P r(X|H) from training data we make
a second simplifying assumption, namely we assume that the probability of any word appearing in a
message is independent of any other word appearing or not. This means
P r(X|S) =
p
Y
j=1
P r(Xj |S), P r(X|H) =
p
Y
j=1
P r(Xj |H),
where Xj is the count of the jth word in the vocabulary. With these assumptions, the classifier is
called Naive Bayes classifier. Despite its simplicity, it works surprisingly well in practice.
Suppose now we have training data represented by a matrix M ∈ {0, 1, 2, . . . }
n×p
containing words
counts for n messages and a vector spam_type ∈ {ham, spam}
n assigning each message to a label
ham or spam. For example, Mij is the number of times word j appears in message i and spam_typei
is its label. By combining the information in M and spam_type we can compute nS and nH, the
1
Assessment 4 MATH70094: Programming for Data Science Autumn 2024
total number of spam and ham messages, nS,j and nH,j the number of times the jth word appears in
spam and ham messages, as well as NS and NH the total number of words in spam and ham messages.
With this we form the estimates
P r(S) ≈
nS
nS + nH
,
P r(H) ≈
nH
nS + nH
,
P r(Xj |S) ≈
nS,j + α
NS + α × (NS + NH)
,
P r(Xj |H) ≈
nH,j + α
NH + α × (NS + NH)
.
The scalar α ∈ (0, 1] helps preventing zero estimates. Note that by applying the logarithm,
P r(S|X) > P r(H|X) is equivalent to
p
X
j=1
log P r(Xj |S) + log P r(S) >
p
X
j=1
log P r(Xj |H) + log P r(H).
To avoid numerical errors when multiplying many near zero numbers in the approximation of the
products Q p
j=1 P r(Xj |S) and Q p
j=1 P r(Xj |H) from the estimates above, it is therefore better to
base the classification on the logarithms of the estimates.
Submission Instructions
Along with this PDF, you are provided with two folders files_train and files_test which
contain within subfolders messages (formed of strings), and two files train.csv and test.csv.
Create files according to the two questions below, and then create one zip file (https://docs.filefor
mat.com/compression/zip/) named CID_PDS_Assessment4.zip with:
• the files train.csv and test.csv,
• a folder corpus, containing your R package files,
• a folder spamfilter, containing your Python package files,
• the corpus_0.0.1.tar.gz file created in Question 1,
• the file process_corpus.R created in Question 1,
• the file filter.py created in Question 2.
This can be visualised as follows:
CID_PDS_Assessment4.zip
|-- train.csv
|-- test.csv
|-- corpus folder
|-- spamfilter folder
|-- corpus_0.0.1.tar.gz
|-- process_corpus.R
|-- filter.py
2
Assessment 4 MATH70094: Programming for Data Science Autumn 2024
Note the following before submitting:
• Do not add the folders files_train and files_test to your zip file.
• Replace CID in CID_PDS_Assessment4.zip by your own college ID number. For
example, if your college ID number is 12345678, then the zip file should be named
12345678_PDS_Assessment4.zip.
• The only external Python and R libraries allowed in this assessment are:
– Python: NumPy, Pandas, unittest,
– R: testthat, R6, stringr, stopwords
You should not load additional (non-base) libraries.
• For Python, provide doc string comments, and for R roxygen2 style comments (as described
in the Blackboard videos of week 9) for every attribute and method you define. You also
should add code comments as usual.
• Please answer in each cell/code block only the corresponding subpart (e.g., only answer Part
D(i) in the cell below the heading Part D(i)). The markers will try, where possible, not to
penalize answers to parts for errors in previous parts. For example, if you cannot do Part D(i),
leave the corresponding cell blank and do Part D(ii) assuming Part D(i) is working.
• You may use code and variables from previous subparts in your answers of a particular part.
• Marks may be deducted if these layout and format instructions are not followed.
Submit the zip file on Blackboard in the Assessment 4 submission tab in the module page. The
deadline is Monday 06 January 2025 at 09:00am, UK time.
Please note Imperial College’s policy on the late submission of assessments. This assessment must
be attempted individually. Your submission must be your own, unaided work. Candidates are
prohibited from discussing assessed coursework, and must abide by Imperial College’s rules. Enabling
other candidates to plagiarise your work constitutes an examination offence. To ensure quality
assurance is maintained, departments may choose to invite a random selection of students to an
‘authenticity interview’ on their submitted assessments.
Question 1 - R (60 marks)
The aim of this question is to build a package for loading and cleaning messages from data.
Some functions that may be useful in this question are:
• gsub, sapply, readLines, Filter,
• str_split from the stringr package,
• stopwords("en") from the stopwords package.
3
Assessment 4 MATH70094: Programming for Data Science Autumn 2024
Code clarity (5 marks)
There is a famous saying among software developers that code is read more often than it is written.
Five marks will be awarded (or not awarded) based on the clarity of the code and appropriate use
of comments.
Part A (25 marks)
Create a script file corpus.R with a R6 class CorpusR6 containing
• private attributes: ham_strings (vector of strings), spam_strings (vector of strings),
• public methods:
– initialize: a function that takes the string name of a source folder as input, reads for
each message file in this folder (and also within subfolders) the contents of the file line
by line, and adds the message text (without the message head) either to spam_strings
or ham_strings depending on if the file name contains the substring "spam" or not.
– clean_messages: a function that modifies all the messages stored in the two private
variables; it proceeds for each message string as follows:
∗ transforms the message string to lower case,
∗ splits the string into words (tokens) separated by arbitrary long whitespace and
creates with these words a vector of strings,
∗ removes from the end of each token any arbitrary sequence of punctuations,
∗ removes any token that belongs to the list of English stopwords obtained from calling
stopwords("en"),
∗ removes from each token any remaning punctuations,
∗ remove all tokens of length less than three,
∗ collapses the vector of tokens into one string, with tokens separated by whitespace.
(We will not make more modifications to the tokens, even though we could.)
– print: a function that prints the CorpusR6 object. For example, when corpus is a
CorpusR6 object formed of 4345 ham messages and 6** spam messages, then we have as
output
> corpus
CorpusR6 object
Number of Ham files: 4345
Number of Spam files: 6**
– save_to_csv: a function that takes the name of a target csv file as input and saves to
it a csv file that contains in each line either ham or spam and separated from this by a
comma a message string, either from ham_string or message_string corresponding to
the first column (the format should be as in the provided files train.csv and test.csv).
4
Assessment 4 MATH70094: Programming for Data Science Autumn 2024
In addition to providing these attributes and functions, include appropriate documentation, input
checks (for every argument!) and unit tests, which test all specifications listed above.
Part B (15 marks)
Create a package called corpus which contains the code from Part A and exposes the func tions in Part A to the user. Make sure that devtools::document(), devtools::test() and
devtools::check() do not produce any errors or warnings (notes are OK) when called from within
the folder corpus. The result should be the file corpus_0.0.1.tar.gz, if you have chosen version
number 0.0.1.
Part C (15 marks)
Make sure that the class from Part A is available. Create a script file process_corpus.R which cre ates two CorpusR6 objects corpus_train and corpus_test from the provided folders files_train
and files_test (you should set a path that works for you, the markers will set another one, make
sure these folders are not part of the final zip file!). For the two objects, clean all messages that
were contained in the folders using clean_messages and print the R6 objects to the screen. Finally,
use save_to_csv to save corpus_train to the file train.csv and corpus_test to test.csv.
The two csv files should contain the same entries as the provided files.
Question 2 - Python (** marks)
The aim of this question is to build a package for spam classification with Naive Bayes using Test
driven development and Defensive Programming, along with an application to a real data set.
Code clarity (5 marks)
There is a famous saying among software developers that code is read more often than it is written.
Five marks will be awarded (or not awarded) based on the clarity of the code and appropriate use
of comments.
Part A (20 marks)
Create a script file utils.py with three functions:
• tokenize: A function that takes a message string as input, splits it into words (tokens) along
whitespace and returns a list with the token strings. There should be no whitespace left
anywhere within the token strings.
5
Assessment 4 MATH70094: Programming for Data Science Autumn 2024
• document_terms: A function that takes a list of word lists each created with tokenize as
input and returns a Document Term Dataframe. This Dataframe has as many rows as there
are word lists in the list, and has as many columns as there are unique words in the word lists.
Each column corresponds to one word, and each entry of the Dataframe counts how many
times a word appears in a document/message (the Dataframe is basically the matrix M from
the Background section).
• compute_word_counts: A function that takes a Document Term Dataframe (created with
document_terms) and a list spam_types of strings (with entries either ham or spam) as inputs,
and returns a 2 × p matrix with counts, where p is the length of the vocabulary, and where
the first row contains the overall counts for words in ham messages and the second row for
spam messages.
In addition to providing these functions, include appropriate documentation, input checks (for every
argument!) and unit tests, which test all specifications listed above.
For example, for the first function we expect the following output:
>>> tokenize(" properly separated text")
['properly', 'separated', 'text']
As an example for the latter two functions, suppose we have the following:
>>> doc1 = ["call", "here", "win", "prize", "money"]
>>> doc2 = ["call", "money", "call", "money", "bargain"]
>>> doc3 = ["call", "here", "information"]
>>> word_lists = [doc1, doc2, doc3]
>>> dtm = document_terms(word_lists)
>>> spam_types = ["spam", "spam", "ham"]
>>> word_counts = compute_word_counts(dtm,spam_types)
In this case, dtm should be
call here win prize money bargain information
1 1 1 1 1 1 0 0
2 2 0 0 0 2 1 0
3 1 1 0 0 0 0 1
while word_counts should be
call here win prize money bargain information
n_ham 1 1 0 0 0 0 1
n_spam 3 1 1 1 3 1 0
6
Assessment 4 MATH70094: Programming for Data Science Autumn 2024
Part B (25 marks)
Create a script file classifier.py with a class NaiveBayes containing
• private attributes: __word_counts (a matrix), __spam_types (a list),
• public attributes: log_probs_ham (a list containing the logs of the approximated P r(Xj |H)
from the Background section), log_probs_spam (a list containing the logs of the approximated
P r(Xj |S)), log_prior_ham (the log of the approximated P r(H)), log_prior_spam (the log
of the approximated P r(S)),
• public methods:
– __init__: a function that takes word_counts and spam_types as arguments, and sets
the two corresponding private attributes;
– get_spam_types: a function that returns the private attribute spam_types;
– get_word_counts: a function that returns the private attribute word_counts;
– fit: a function that takes as argument an α value (with default α = 0.5), and sets the
values of the public attributes as described in the Background section;
– classify: a function that takes a message string, tokenizes it using the method tokenize
from Part A and returns a classification ham or spam, as explained in the Background
section; words in the message that were not seen in the training data are ignored;
– print: a print method that prints the object as specified in the example below.
In addition to providing this class, include appropriate documentation and unit tests, which test all
specifications listed above.
Continuing the example from Part A we should obtain
>>> nb <- NaiveBayes(word_counts,spam_types)
>>> nb.fit(1)
>>> nb
NaiveBayes object
vocabulary size: 7
top 5 ham words: call,here,information,win,prize
top 5 spam words: call,money,here,win,prize
(prior_ham,prior_spam): (0.3333333,0.6666667)
Here, top 5 ham words corresponds to the five largest values in log_probs_ham, and top 5 spam
words corresponds to the five largest values in log_probs_spam.
7
Assessment 4 MATH70094: Programming for Data Science Autumn 2024
Part C (15 marks)
Create a folder containing the data for a Python package called spamfilter with the code from
Parts A and B, and exposes the functions in Part A and the class in Part B to the user. Make sure
that running python -m pytest and python -m build from within the folder spamfilter in the
command line does not produce any errors or failures. The result of python -m build should be the
file spamfilter-0.0.1.tar.gz and/or spamfilter-0.0.1*******.whl in the folder spamfilter/dist,
if you have chosen version number 0.0.1 (and ******* are optional other characters).
Part D (25 marks)
Make sure that the functions and class from Parts A and B are available. Create a script file
filter.py with code as described below.
D(i)
Load the file train.csv and create with this an object from the NaiveBayes class. Fit the object
with α = 1 and print it to the console.
D(ii)
Load also the file test.csv and classify the messages in both train.csv and test.csv using the
classifier from Part D(i). Print the confusion tables (comparing true classifications to actual ones)
for both cases, and print the accuracy (diagonal of confusion matrix divided by total number of
messages in the respective set of messages) to the console. Comment briefly on the difference
between the accuracies for both cases.
D(iii)
Continuing on from D(ii) consider α now a tuning parameter. Fit NaiveBayes messages in train.csv
for 10 evenly spaced values of α in the interval [0,1]. Determine the best such α in terms of achieving
the highest accuracy when testing on the messages in test.csv.
Discuss briefly if choosing the tuning parameter α in this way is reasonable.




請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫MECH201、代做MATLAB設計程序
  • 下一篇:解決客戶強制下款暴力催收問題!米來花全國客服電話
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        午夜精品电影| 欧美永久精品| 国产婷婷色综合av蜜臀av| 国产乱码精品一区二区三区忘忧草| 久久久久久久久久久久久女国产乱| 9l视频自拍蝌蚪9l视频成人| 国模叶桐国产精品一区| 一区二区在线视频播放| 欧美成人xxx| 欧美视频日韩视频在线观看| 欧美日韩午夜激情| 99精品欧美一区二区三区| 欧美一区二区三区男人的天堂| 欧美激情一二区| 欧美激情一区| 欧美激情一区二区久久久| 亚洲免费在线看| 久久婷婷国产麻豆91天堂| 精品999在线播放| 亚洲一区三区视频在线观看| 国产区精品视频| 亚洲图片在线| 亚洲欧美日韩一区二区三区在线观看| 宅男66日本亚洲欧美视频| 亚洲国产精品毛片| 麻豆av一区二区三区| 亚洲视频电影图片偷拍一区| 亚洲欧美日韩网| 亚洲精品国产精品乱码不99按摩| 亚洲一区二区四区| 久久一区二区精品| 国产网站欧美日韩免费精品在线观看| 国产欧美日韩综合一区在线观看| 国产精品99免费看| 亚洲婷婷国产精品电影人久久| 狠狠色丁香久久婷婷综合丁香| 一区二区欧美视频| 国产亚洲欧洲| 欧美国产激情二区三区| 欧美国产激情| 久久综合色一综合色88| 久久影视精品| 一本久道综合久久精品| 久久精品国产99国产精品澳门| 欧美一区日韩一区| 免费不卡在线观看av| 欧美日韩网站| 国产色爱av资源综合区| 亚洲欧美一区二区在线观看| 在线视频观看日韩| 久久国产精品一区二区| 午夜在线精品偷拍| 欧美视频一区二区在线观看| 欧美在线视频在线播放完整版免费观看| 午夜日韩在线观看| 欧美了一区在线观看| 在线不卡中文字幕播放| 久久婷婷成人综合色| 国产精品婷婷午夜在线观看| 国语精品中文字幕| 国产精品一区二区久激情瑜伽| 国产精品美女久久久浪潮软件| 久久av红桃一区二区小说| 国产午夜精品美女毛片视频| 一区二区久久久久| 亚洲福利视频专区| 精品成人免费| 伊人久久大香线蕉综合热线| 亚洲精品视频免费观看| 国产欧美日韩激情| 欧美精品一级| 欧美高清hd18日本| 欧美亚州韩日在线看免费版国语版| 国内外成人在线| 亚洲一区二区三区高清不卡| 免费成人黄色| 激情综合色丁香一区二区| 国产免费亚洲高清| 另类综合日韩欧美亚洲| 一区二区高清在线观看| 欧美日韩另类丝袜其他| 国产一区二区在线免费观看| 欧美高清不卡| 亚洲国产精品一区二区三区| 国产欧美日韩亚洲一区二区三区| 亚洲尤物影院| 国产亚洲精品资源在线26u| 国产一区二三区| 日韩午夜电影av| 国产毛片久久| 亚洲免费在线看| 国产精品草草| 亚洲国产aⅴ天堂久久| 亚洲国产精品精华液2区45| 榴莲视频成人在线观看| 亚洲国产欧美另类丝袜| 免费成人高清| 午夜综合激情| 欧美精品日韩| 久久久久久一区二区| 一区二区不卡在线视频 午夜欧美不卡在| 欧美一级视频精品观看| 久久嫩草精品久久久精品| 亚洲欧美日韩另类| 欧美日韩国产在线播放网站| 99日韩精品| 一区二区在线不卡| 亚洲美女在线看| 欧美日韩精品免费观看视一区二区| 欧美电影电视剧在线观看| 精品电影一区| 午夜免费在线观看精品视频| 欧美激情视频一区二区三区不卡| 国产精品区一区二区三区| 最新国产精品拍自在线播放| 国产精品国产三级国产aⅴ入口| 激情丁香综合| 夜夜嗨av一区二区三区四季av| 欧美日本精品一区二区三区| 国产精品99久久99久久久二8| 欧美精品成人91久久久久久久| 亚洲小说欧美另类社区| 亚洲一区在线视频| 欧美在线一二三| 国产精品视频最多的网站| 国产主播一区二区三区| 欧美视频在线观看一区二区| 在线视频中文亚洲| 久久精品国产精品| 欧美日韩不卡一区| 激情成人中文字幕| 久久精品理论片| 久久久美女艺术照精彩视频福利播放| 欧美伊人精品成人久久综合97| 久久免费精品日本久久中文字幕| 亚洲国内高清视频| 欧美噜噜久久久xxx| 久久久999精品免费| 最新亚洲激情| 欧美一级在线播放| 亚洲高清视频的网址| 最新中文字幕一区二区三区| 欧美日韩天天操| 欧美性猛交一区二区三区精品| 亚洲免费在线视频| 欧美日韩精品在线视频| 欧美+日本+国产+在线a∨观看| 欧美日精品一区视频| 亚洲国产第一| 欧美日韩精品综合| 国产精品免费小视频| 在线精品福利| 亚洲综合精品自拍| 欧美激情日韩| 免费看成人av| 午夜久久影院| 韩国一区二区三区美女美女秀| 国产精品亚洲片夜色在线| 亚洲欧美国产精品桃花| 欧美777四色影视在线| 一本色道久久综合亚洲精品按摩| 午夜精品美女久久久久av福利| 亚洲一区二区三区乱码aⅴ| 亚洲视频在线观看视频|