日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

PHYS 410代寫、代做MATLAB程序設計
PHYS 410代寫、代做MATLAB程序設計

時間:2024-12-05  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



PHYS 410: Computational Physics Fall 2024
Project 2—The Time Dependent Schro¨dinger Equation
Due: Monday, December 2, 11:59 PM
1. Problem 1
1.1 Introduction
In this part of the project you will solve the one-dimensional time-dependent Schr¨odinger equation using the method
discussed in the lecture, which will be summarized here.
The continuum equation is (after non-dimensionalization)
iψ(x,t)t = −ψxx + V (x,t)ψ , (1)
where the wavefunction, ψ(x,t), is complex. The equation is to be solved on the domain
0 ≤ x ≤ 1 , 0 ≤ t ≤ tmax,
subject to initial and boundary conditions
ψ(x, 0) = ψ0(x), (2)
ψ(0,t) = ψ(1,t) = 0 . (3)
The initial data function ψ0(x) can be complex in general, but in the cases we will consider will be real. We will also
restrict attention to time-independent potentials, but carry the explicit dependence in the following to emphasize
that, in principle, it is no more difficult to deal with a time-dependent potential than a time-independent one.
We note that ψ can be expressed in terms of its real and imaginary parts, ψRe and ψIm, respectively as
ψ = ψRe + iψIm
A useful diagnostic quantity is the “running integral”, P(x,t), of the probability density, ρ = |ψ|
2 = ψψ

:
P(x,t) =
Z x
0
ψ(x˜,t)ψ
**2;
(x˜,t)dx˜ (4)
If the wavefunction is properly normalized, then we will have
P(1,t) = 1
but even if it is not so normalized (and in our applications there will be no need to ensure normalization), we should
have
P(1,t) = conserved to level of solution error
The quantity
√ρ = |ψ| is also a useful diagnostic. However, as you develop your code to solve the Schr¨odinger
equation you should be prepared to plot the real and imaginary parts of ψ as well.
A family of exact solutions of (1) is
ψ(x,t) = e
−im2π
2
t
sin(mπx) (5)
where m is a positive integer.
1.2 Discretization
We discretize the continuum domain by introducing the discretization level, l, and the ratio of temporal to spatial
mesh spacings
λ =
∆t
∆x
1Then
nx = 2
l + 1
∆x = 2
−l
∆t = λ∆x
nt = round (tmax/∆t) + 1
We apply the Crank-Nicolson discretization approach to (1)–(3) yielding
i
ψ
n+1
j
− ψ
n
j
∆t
= −
1
2


ψ
n+1
j+1
− 2ψ
n+1
j
+ ψ
n+1
j−1
∆x
2 +
ψ
n
j+1
− 2ψ
n
j
+ ψ
n
j−1
∆x
2
?**4;
?**6; +
1
2
V
n+ 1
2
j

ψ
n+1
j
+ ψ
n
j

j = 2, 3, . . . , nx − 1 , n = 1, 2, . . . nt − 1 (6)
ψ
n+1
1
= ψ
n+1
nx
= 0 , n = 1, 2, . . . nt − 1 (7)
ψ
1
j
= ψ0(xj ), j = 1, 2, . . . nx (8)
1.3 Implementation
Implement your solution of (6)–(8) as a MATLAB function with the following header and arguments:
function [x t psi psire psiim psimod prob v] = ...
sch_1d_cn(tmax, level, lambda, idtype, idpar, vtype, vpar)
% Inputs
%
% tmax: Maximum integration time
% level: Discretization level
% lambda: dt/dx
% idtype: Selects initial data type
% idpar: Vector of initial data parameters
% vtype: Selects potential type
% vpar: Vector of potential parameters
%
% Outputs
%
% x: Vector of x coordinates [nx]
% t: Vector of t coordinates [nt]
% psi: Array of computed psi values [nt x nx]
% psire Array of computed psi_re values [nt x nx]
% psiim Array of computed psi_im values [nt x nx]
% psimod Array of computed sqrt(psi psi*) values [nt x nx]
% prob Array of computed running integral values [nt x nx]
% v Array of potential values [nx]
The input parameters idtype and vtype are integers that select which initial data type and potential type, respectively,
are to be used. Dependent on the type, elements of the associated parameter vector will be used to define the
initial data or potential. Specifically, you are to implement options as follows:
Initial data types
• idtype == 0: Exact family (5)
ψ(x, 0) = sin(mπx)
– idpar(1): m
2• idtype == 1: Boosted Gaussian:
ψ(x, 0) = e
ipx
e
−((x−x0)/δ)
2
– idpar(1): x0
– idpar(2): δ
– idpar(3): p
Potential types
• vtype == 0: No potential.
V (x) = 0
• vtype == 1: rectangular barrier or well.
V (x) =

?**0;
?**1;
0 for x < xmin
Vc for xmin ≤ x ≤ xmax
0 for x > xmax
– vpar(1): xmin
– vpar(2): xmax
– vpar(3): Vc
Notes
• The terminology “boosted Gaussian” comes from the fact that by pre-multiplying the (real-valued) Gaussian
profile by e
ipx
, we give the wave packet some momentum in the direction of p (which can have either sign).
• The constant Vc is positive for a barrier, negative for a well.
• Don’t worry about the fact that, strictly speaking, the boosted Gaussian profile is incompatible with the
boundary conditions. In practice we will try to center the Gaussian sufficiently far from the boundaries that
the incompatibility is lost in the truncation error. You should always set the wave function to 0 at x = 0 and
x = 1, including at the initial time.
Coding
• Write equations (6)–(7) as a complex (as in complex number) tridiagonal system for the advanced unknowns
ψ
n+1
j
. In your code, set up the tridiagonal system using spdiags as discussed in class and as illustrated in the
code diff 1d imp.m from Tutorial 6. and solve it using left division. Note that MATLAB has native support for
complex numbers (the variables i and j are both initialized to the unit pure imaginary number, i) and that
you should implement your solution directly using complex arithmetic. As observed above, there is no need to
worry about normalization of the wave function.
• Once you’ve set up the tridiagonal matrix, say A, using spdiags, you can view the corresponding full matrix
using the MATLAB command full(A). This can be useful while debugging.
• Note that the MATLAB abs(z) command when applied to a complex number, z, returns its modulus, |z|.
• The integral in (4) can be computed to O(h
2
) using the trapezoidal formula. Recall that if we are given n
approximate values fi at values of x, xi
, then the trapezoidal approximation is given by
Z xn
x1
f(x)dx ≈
1
2
nX−1
i=1
(fi + fi+1)(xi+1 − xi)
1.4 Convergence testing
Define a level l solution computed using sch 1d cn by ψ
l
. Note that ψ
l
is a function of both the discrete time and
space coordinates. Denote by dψ
l
the quantity defined by

l = ψ
l+1 − ψ
l
3where it is to be understood that the data defined by the grid function (array) ψ
l+1
is 2:1 coarsened in both the
time and space dimensions so that it has the same size as ψ
l
. Then one way we can convergence test sch 1d cn is to
compute
kdψ
l
k2(t
n
) (9)
where
k · k2
denotes the l-2 norm (RMS value) that has been defined before; namely, for any length-m vector v
kvk2 =
sPm
j=1
|v
j
|
2
m
Observe that for complex numbers, |v
j
| is the modulus of the number. Note that (9) involves taking spatial norms
of the pairwise subtraction of grid functions at two different levels. This results in a function of the discrete time,
t
n, on the level-l grid.
Following the development we have seen for solutions of other finite difference equations, we note that since our FDA
is O(h
2
) (where ∆x = h and ∆t = λh), we expect the solution to be O(h
2
) accurate, with ψ
l admitting an expansion
of the form
ψ
l
(x,t) = ψ(x,t) + h
2
l
e2(x,t) + O(h
4
l
) (10)
where e2(x,t) is some error function. From (10) we can deduce that if we graph rescaled values of kdψ
lk2 on a single
plot, then convergence is signalled by near-coincidence of the curves, with better agreement as we go to higher values
of l. In particular, for a test with levels
l = lmin, lmin + 1, . . . , lmax
we should plot
kdψ
lmin k2 , 4kdψ
lmin+1
k2 , 4
2
kdψ
lmin+2
k2 , . . . , 4
lmax−lmin−1
kdψ
lmax−1
k2
Additionally, for the case when idtype = 0, so that we know the exact solution, we can compute the actual solution
errors. Specifically, we can perform precisely the same type of convergence test just described, but where ψ
l+1
is
replaced with ψexact. Thus we define
kE(ψ
l
)k2(t
n
) = kψexact − ψ
l
k2(t
n
)
and use exactly the same plotting strategy for kE(ψ
l
)k2 as we do for kdψ
lk2.
Convergence tests to perform
Ensure that at least one of the following convergence tests, including the plotting, can be performed by executing a
script ctest 1d.
1. idtype = 0, vtype = 0
Other parameters
• idpar = [3]
• tmax = 0.25
• lambda = 0.1
• lmin = 6
• lmax= 9
Perform the 4-level test and make convergence plots as described above for both kdψ
lk2 and kE(ψ
l
)k2. Include
the plots in your report.
2. idtype = 1, vtype = 0
Other parameters
• idpar = [0.50 0.075 0.0]
• tmax = 0.01
4• lambda = 0.01
• lmin= 6
• lmax= 9
Perform the 4-level test and make a convergence plot as described above for kdψ
lk2. Include the plot in your
report.
1.5 Numerical Experiments
Consider the discrete running integral of the probability density:
P
n
j
= P(xj ,t
n
), j = 1, 2, . . . nx , n = 1, 2, . . . nt
Define the temporal average, P¯
j
, of the above quantity:

j
=
Pnt
n=1 P
n
j
nt
and note that the MATLAB command mean can be used to compute this. We will also want to ensure that P¯
j
is
properly normalized so that P¯
nx = 1. We can do this as follows:

j
:= P¯
j
/P¯
nx
, j = 1, 2, . . . nx
In the following we will assume that P¯
j
has been properly normalized. Given two values of x, x1 and x2, satisfying
x2 > x1, we can interpret the quantity
P¯(x2) − P¯(x1)
as the fraction of time our quantum particle spends in the interval x1 ≤ x ≤ x2. Here the notation P¯(x) is to
be interpreted as P¯(x) = P¯(xj ) = P¯
j
where xj is the nearest grid point to x. Now, for a free particle—i.e. for
V = 0—and for sufficiently long times, we expect that
P¯(x2) − P¯(x1) → x2 − x1
That is, the fraction of time the particle spends in the interval is given simply by the width of the interval (this
direct equality is due to the fact that we are solving the Schr¨odinger equation on the unit interval, 0 ≤ x ≤ 1).
For the general case of a non-zero potential, we can then define the excess fractional probability that the particle
spends in a given spatial interval as

e(x1, x2) =
P¯(x2) − P¯(x1)
x2 − x1
For the experiments described below, this quantity will span orders of magnitude so, particularly for the purposes of
plotting, it will be convenient to compute its (natural) logarithm (recall that MATLAB uses log for the natural log).
ln F¯
e(x1, x2) = ln
P¯(x2) − P¯(x1)
x2 − x1
Also observe that although we have called F¯
e(x1, x2) the excess fractional probability, it can in fact satisfy F¯
e(x1, x2) <
1, indicating that the particle is spending less time in the specified interval than a free particle would. Indeed, in the
experiments that follow, you should find that F¯
e(x1, x2) < 1 is the rule rather than the exception.
51.5.1 Experiment 1: Barrier Survey
In this investigation the particle will start to the left of a barrier whose height, V0, is the control parameter for the
experiment. You will then determine the dependence of ln(F¯
e(x1, x2)) on ln(V0) where x1 and x2 span the region to
the right of the barrier.
Parameters
• tmax = 0.10
• level = 9
• lambda = 0.01
• idtype = 1 (boosted Gaussian)
• idpar = [0.40, 0.075, 20.0]
• vtype = 1 (rectangular barrier)
• vpar = [0.6, 0.8, VARIABLE > 0]
• x1 = 0.8
• x2 = 1.0
Write a script called barrier survey that uses sch 1d cn to compute F¯
e(0.8, 1.0) for 251 uniformly spaced values
of ln(V0) ranging from -2 to 5. The script is to make a plot of ln(F¯
e(0.8, 1.0)) versus ln(V0). Include the plot in your
writeup and comment on what you can deduce from it. Since it will take some time for the 251 runs to complete, it
only makes sense to debug your script using fewer values of ln(V0).
1.5.2 Experiment 2: Well Survey
The second experiment is very much like the first, except that we now consider scattering of a particle off a potential
well. Once again you will perform a survey to investigate the dependence of ln(F¯
e(x1, x2)) on ln(V0) where x1 and
x2 span the location of the well.
Parameters
• tmax = 0.10
• level = 9
• lambda = 0.01
• idtype = 1 (boosted Gaussian, but note that p = 0)
• idpar = [0.40, 0.075, 0.0]
• vtype = 1 (rectangular well)
• vpar = [0.6, 0.8, VARIABLE < 0]
• x1 = 0.6
• x2 = 0.8
Write a script called well survey that uses sch 1d cn to compute F¯
e(0.6, 0.8) for 251 uniformly spaced values of
ln(|V0|) ranging from 2 to 10. Note that V0 is strictly less than 0. The script is to make a plot of ln(F¯
e(0.6, 0.8))
versus ln(|V0|). Include the plot in your writeup and discuss what you can conclude from it.
62. Problem 2
2.1 Introduction
In this problem you will solve the two-dimensional Schr¨odinger equation using the ADI technique discussed in class
for the case of the diffusion equation. Indeed, as mentioned in lecture, and should you have time, I suggest that you
consider first solving the 2d diffusion equation using ADI which will give you a good base from which to tackle the
Schr¨odinger equation.
The non-dimensionalized continuum equation is
iψ(x, y, t)t = −(ψxx + ψyy) + V (x, y)ψ
or, multiplying through by −i
ψt = i(ψxx + ψyy) − iV (x, y)ψ (11)
In this last form, the similarity to a diffusion equation with an imaginary diffusion constant (and a source term) is
apparent. Equation (11) is to be solved on the domain
0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , 0 ≤ t ≤ tmax
subject to initial and boundary conditions
ψ(x, y, 0) = ψ0(x, y) (12)
ψ(0, y, t) = ψ(1, y, t) = ψ(x, 0, t) = ψ(x, 1, t) = 0 (13)
A family of exact solutions is given by
ψ(x, y, t) = e
−i(m2
x+m2
y

2
t
sin(mxπx) sin(myπy) (14)
where mx and my are positive integers.
2.2 Discretization and the ADI scheme
As for the 1d case, the continuum domain is discretized by introducing the discretization level, l, and the ratio of
temporal to spatial mesh spacings
λ =
∆t
∆x
=
∆t
∆y
Then
nx = ny = 2l + 1
∆x = ∆y = 2−l
∆t = λ∆x
nt = round (tmax/∆t) + 1
Defining the difference operators ∂
h
xx and ∂
h
yy by

h
xxu
n
i,j ≡
u
n
i+1,j − 2u
n
i,j + u
n
i−1,j
∆x
2

h
yyu
n
i,j ≡
u
n
i,j+1 − 2u
n
i,j + u
n
i,j−1
∆y
2
the following is an ADI discretization of (11):

1 − i
∆t
2

h
xx
ψ
n+ 1
2
i,j =

1 + i
∆t
2

h
xx 1 + i
∆t
2

h
yy − i
∆t
2
V
i,j
ψ
n
i,j ,
i = 2, 3, . . . , nx − 1 , j = 2, 3, . . . , ny − 1 , n = 1, 2, . . . , nt − 1 (15)
7
1 − i
∆t
2

h
yy + i
∆t
2
V
i,j
ψ
n+1
i,j = ψ
n+ 1
2
i,j ,
i = 2, 3, . . . , nx − 1 , j = 2, 3, . . . , ny − 1 , n = 1, 2, . . . , nt − 1 (16)
Equations (15) and (16) are to be supplemented with the initial conditions
ψ
1
i,j = ψ0(xi
, yj ), (17)
and the boundary conditions
ψ
n
1,j = ψ
n
nx,j = ψ
n
i,1 = ψ
n
i,ny = 0 . (18)
2.3 Implementation
Implement your solution of (15)–(18) as a MATLAB function, sch 2d adi with the following header and arguments:
function [x y t psi psire psiim psimod v] = ...
sch_2d_adi(tmax, level, lambda, idtype, idpar, vtype, vpar)
% Inputs
%
% tmax: Maximum integration time
% level: Discretization level
% lambda: dt/dx
% idtype: Selects initial data type
% idpar: Vector of initial data parameters
% vtype: Selects potential type
% vpar: Vector of potential parameters
%
% Outputs
%
% x: Vector of x coordinates [nx]
% y: Vector of y coordinates [ny]
% t: Vector of t coordinates [nt]
% psi: Array of computed psi values [nt x nx x ny]
% psire Array of computed psi_re values [nt x nx x ny]
% psiim Array of computed psi_im values [nt x nx x ny]
% psimod Array of computed sqrt(psi psi*) values [nt x nx x ny]
% v Array of potential values [nx x ny]
As before, the integer arguments idtype and vtype encode the initial data and potential types, respectively, with
idpar and vpar defining the parameters for the various options. In this case you are to implement options as follows:
Initial data types
• idtype == 0: Exact family (14)
ψ(x, y, 0) = sin(mxπx) sin(myπy)
– idpar(1): mx
– idpar(2): my
• idtype == 1: Boosted Gaussian
ψ(x, y, 0) = e
ipxx
e
ipyy
e
−((x−x0)
2/δ2
x+(y−y0)
2/δ2
y
)
– idpar(1): x0
– idpar(2): y0
– idpar(3): δx
– idpar(4): δy
8– idpar(5): px
– idpar(6): py
As previously, don’t worry about the fact that the Gaussian data is strictly speaking incompatible with the
boundary conditions; just be sure to always impose the correct boundary conditions.
Potential types
• vtype == 0: No potential.
V (x, y) = 0
• vtype == 1: Rectangular barrier or well.
V (x, y) = 
Vc for (xmin ≤ x ≤ xmax) and (ymin ≤ y ≤ ymax)
0 otherwise
– vpar(1): xmin
– vpar(2): xmax
– vpar(3): ymin
– vpar(4): ymax
– vpar(5): Vc
• vtype == 2: Double slit. Let j
′ = (ny − 1)/4 + 1. Then
Vi,j′ = Vi,j′+1 = 0 for [(x1 ≤ xi) and (xi ≤ x2)] or [(x3 ≤ xi) and (xi ≤ x4)]
Vi,j′ = Vi,j′+1 = Vc otherwise
Vi,j = 0 for j 6= (j

or j
′ + 1)
That is, V is only non-zero for y-locations given by j = j
′ or j = j
′ + 1 and for x-positions not coincident with
one of the slits. This thus simulates a thin (two mesh points wide) plate at a fixed y-position, with adjustable
slit openings, which span (x1, x2) and (x3, x4).
– vpar(1): x1
– vpar(2): x2
– vpar(3): x3
– vpar(4): x4
– vpar(5): Vc
Coding
• IMPORTANT!! Beware that the transpose operator ’ computes the conjugate transpose (i.e. it will complexconjugate
any complex numbers it encounters), so probably will not be what you want. Use the non-conjugating
operator .’ instead.
2.4 Convergence testing
Convergence test your code in the same manner that you did for the 1d case, taking into account the extra dimension.
In particular, when performing a convergence test, compute the two-level deviation norms
kdψl
k2(t
n
) (19)
as well as the deviations from the exact solution (when using initial data corresponding to an exact solution)
kE(ψ
l
)k2(t
n
) = kψexact − ψ
l
k2(t
n
)
Note that for the 2d case, the spatial norm k · k2 involves a sum over both spatial dimensions, i.e. treat any 2d grid
function as a vector of length nx × ny.
9Convergence test to perform
• idtype = 0, vtype = 0
Other parameters
– idpar = [2, 3]
– tmax = 0.05
– lambda = 0.05
– lmin = 6
– lmax = 9
Write a script called ctest 2d that performs the 4-level test and makes convergence plots as described above for
both kdψlk2 and kE(ψ
l
)k2. Include the plots in your report.
2.5 Numerical experiments
In the true spirit of projects, you’ll be mostly on your own here. At a minimum, make AVI movies of the following
scenarios and include them in your submission. In all cases you should use Gaussian initial data, with or without a
boost (in either and/or both directions) as you find convenient.
1. Scattering off a rectangular barrier (vtype = 1).
2. Scattering off a rectangular well (vtype = 1).
3. Scattering through a double slit (vtype = 2). Try to simulate discernible particle self-interference on the far
side of the slit.
I recommend that you consider using filled contour plots generated with the MATLAB contourf command as the
basis for making your movies. A useful attribute for contourf is the colormap which can be manipulated using the
colormap command.
Final caution
Note that because your routine will be storing the entire time evolution of the solution (as well as several additional
functions), memory requirements can get extreme for long run times. MATLAB will complain if you try to allocate an
array that is “too large” but you may find your machine gets very sluggish before that point, so beware. At level 9
and below you shouldn’t have too many difficulties, again provided that you don’t try integrating to very long times.
Report any undue difficulties to me as usual.
10

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓機場攔人 機場被攔截解決辦法
  • 下一篇:菲律賓團簽和個簽區別 團簽和個簽的介紹
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国语自产精品视频在线看抢先版结局| 国产女人水真多18毛片18精品视频| 免费精品99久久国产综合精品| 一区二区不卡在线视频 午夜欧美不卡'| 国产日韩精品电影| 午夜精品偷拍| 欧美日韩中文字幕在线视频| 欧美激情网站在线观看| 怡红院精品视频在线观看极品| 欧美日韩国产精品一卡| 黄色成人av在线| 亚洲毛片在线观看.| 久久久久久久综合日本| 亚洲天堂免费在线观看视频| 狠久久av成人天堂| 国产精品亚洲а∨天堂免在线| 亚洲电影在线| 日韩视频―中文字幕| 西西裸体人体做爰大胆久久久| 国内揄拍国内精品少妇国语| 99国产精品国产精品毛片| 欧美一区国产在线| 国产精品激情偷乱一区二区∴| 久久亚洲图片| 狠狠做深爱婷婷久久综合一区| 亚洲国产经典视频| 欧美一区二区三区的| 国产日韩欧美精品综合| 亚洲国产精品一区二区尤物区| 免费在线看成人av| 久久久www成人免费精品| 亚洲九九爱视频| 99精品热6080yy久久| 亚洲欧美在线网| 久久久久国产精品一区三寸| 亚洲网友自拍| 樱桃视频在线观看一区| 一区二区三区在线免费视频| 亚洲宅男天堂在线观看无病毒| 老牛国产精品一区的观看方式| 日韩一二三在线视频播| 欧美三级韩国三级日本三斤| 国产一区二区三区日韩欧美| 国产精品免费区二区三区观看| 国产精品免费区二区三区观看| 久久琪琪电影院| 国产九九视频一区二区三区| 国产一级揄自揄精品视频| 99视频国产精品免费观看| 久久狠狠久久综合桃花| 久久在线免费观看| 欧美一区二区三区免费观看| 免费看的黄色欧美网站| 亚洲欧美中文日韩在线| 狠狠久久五月精品中文字幕| 狼人社综合社区| 日韩亚洲欧美成人一区| 在线视频亚洲一区| 亚洲无毛电影| 国产一区二区日韩精品| 国产精品资源在线观看| 一本色道**综合亚洲精品蜜桃冫| 精品91在线| 性欧美暴力猛交69hd| 另类天堂视频在线观看| 午夜精品一区二区三区在线视| 久久精精品视频| 亚洲网站在线播放| 日韩亚洲欧美中文三级| 欧美一级在线亚洲天堂| 亚洲视频免费在线观看| 国产欧美精品在线观看| 国产精品综合不卡av| 国产麻豆精品视频| 久久久av水蜜桃| 国产精品另类一区| 在线观看视频一区| 久久网站热最新地址| 国产综合自拍| 国产欧美精品一区二区三区介绍| 欧美日韩免费区域视频在线观看| 欧美视频精品一区| 欧美四级伦理在线| 在线观看国产精品淫| 国产精品私人影院| 欧美精品一区二区三区很污很色的| 欧美精品久久99久久在免费线| 欧美xxxx在线观看| 麻豆成人在线播放| 麻豆九一精品爱看视频在线观看免费| 国产精品毛片大码女人| 亚洲免费观看高清完整版在线观看| 国产资源精品在线观看| 欧美日韩极品在线观看一区| 欧美日韩亚洲一区二区三区四区| 国产精品日韩久久久| 欧美日韩在线视频一区| 黄色一区二区在线| 欧美在线播放一区| 久久婷婷久久一区二区三区| av成人免费观看| 久久久99国产精品免费| 国产精品稀缺呦系列在线| 国产精品美女午夜av| 久久久999精品免费| 国产精品久久久久久模特| 久久尤物电影视频在线观看| 国产精品一区免费视频| 久色成人在线| 亚洲欧美国产毛片在线| 国产一区二区三区久久久久久久久| 99精品视频免费观看| 亚洲影院色在线观看免费| 嫩草伊人久久精品少妇av杨幂| 中文在线不卡视频| 久久夜色精品国产欧美乱极品| 老司机精品福利视频| 欧美精品亚洲| 亚洲一区二区三区精品视频| 在线不卡欧美| 欧美另类一区二区三区| 久久视频免费观看| 另类图片国产| 欧美久久精品午夜青青大伊人| 91久久中文字幕| 亚洲精品免费一区二区三区| 国产精品影片在线观看| 国户精品久久久久久久久久久不卡| 欧美综合激情网| 亚洲婷婷国产精品电影人久久| 精品91视频| 亚洲欧美日韩精品久久奇米色影视| 欧美一区二区三区另类| 亚洲香蕉成视频在线观看| 欧美日本国产视频| 久久婷婷综合激情| 亚洲精品一区久久久久久| 欧美va亚洲va日韩∨a综合色| 99国产精品国产精品毛片| 欧美极品欧美精品欧美视频| 午夜免费电影一区在线观看| 欧美午夜精品久久久久久浪潮| 国产亚洲精品久久久久久| 久久久亚洲欧洲日产国码αv| 欧美一区二区啪啪| 亚洲欧美在线一区二区| 亚洲视频精选在线| 欧美日韩国产页| 黄色成人av网站| 亚洲小说春色综合另类电影| 性欧美xxxx视频在线观看| 亚洲欧洲一区| 欧美日韩视频免费播放| 欧美激情第10页| 亚洲国产三级在线| 欧美第十八页| 一区二区电影免费观看| 欧美日韩高清在线观看| 99综合电影在线视频| 午夜精品影院在线观看| 一卡二卡3卡四卡高清精品视频| 久久久久国产精品厨房| 久久久水蜜桃av免费网站| 亚洲毛片在线观看.|