日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH38161、代做R程序設計
代寫MATH38161、代做R程序設計

時間:2024-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        午夜久久久久久| 亚洲精品精选| 欧美成人免费观看| 麻豆国产精品一区二区三区| 永久域名在线精品| 在线视频欧美精品| 国产精品成人国产乱一区| 久久亚裔精品欧美| 欧美四级在线| 欧美精品色一区二区三区| 欧美一区二区三区久久精品茉莉花| 欧美有码在线观看视频| 欧美日本不卡| 国产精品久久久久久av下载红粉| 91久久久久久| 久久免费视频在线观看| 玖玖玖国产精品| 蜜臀av国产精品久久久久| 亚洲欧洲日本mm| 一区二区三区高清在线| 亚洲福利av| 欧美成人激情视频| 国产精品videosex极品| 日韩性生活视频| 国产精品福利在线| 91久久久一线二线三线品牌| 一区二区三区高清| 国产精品亚洲一区| 国产自产v一区二区三区c| 国产精品久久久久久av下载红粉| 一区二区三区视频在线播放| 欧美—级a级欧美特级ar全黄| 欧美日本一道本在线视频| 久久这里只有| 国产精品丝袜白浆摸在线| 黄色资源网久久资源365| 欧美午夜理伦三级在线观看| 在线视频欧美一区| 亚洲国产日韩欧美在线动漫| 亚洲高清自拍| 亚洲精品日韩欧美| 欧美三级日韩三级国产三级| 欧美日本三区| 亚洲国产专区校园欧美| 激情综合电影网| 蜜乳av另类精品一区二区| 亚洲午夜av在线| 亚洲激情在线激情| 亚洲精品日韩久久| 欧美日韩午夜在线| 久久久久久久久岛国免费| 亚洲亚洲精品在线观看| 欧美激情一区二区| 久久丁香综合五月国产三级网站| 亚洲永久免费视频| 国产精品九九| 欧美大片va欧美在线播放| 国产麻豆一精品一av一免费| 亚洲欧美在线高清| 国产精品色一区二区三区| 亚洲国产aⅴ天堂久久| 在线观看中文字幕不卡| 欧美日韩成人一区| 亚洲黄色在线视频| 亚洲图片欧美午夜| 99国产精品久久久久久久成人热| 国产精品久久久久aaaa| 欧美午夜精彩| 香蕉久久夜色精品国产| 老司机午夜精品视频在线观看| 精品成人a区在线观看| 国产视频一区在线观看一区免费| 欧美自拍偷拍| 欧美专区一区二区三区| 欧美日韩亚洲国产一区| 欧美欧美在线| 亚洲日本成人在线观看| 亚洲激情欧美| 一区二区三区四区国产| 欧美日韩国产区一| 9人人澡人人爽人人精品| 国产精品黄色在线观看| 国产一区二区电影在线观看| 国产亚洲欧美激情| 国产精品成人免费| 亚洲日本免费| 99精品热视频| 性色av一区二区三区| 在线观看国产精品网站| 国产伦精品一区二区三区高清| 欧美在线一区二区| 亚洲开发第一视频在线播放| 亚洲美女精品成人在线视频| 国产精品99一区| 激情av一区二区| 欧美黄色大片网站| 亚洲激情网站免费观看| 国产精品夜夜夜一区二区三区尤| 国产精品自拍在线| 国内成人精品一区| 国产精品国产三级国产专播精品人| 欧美三日本三级三级在线播放| 亚洲一区二区免费在线| 亚洲免费观看高清在线观看| 尤物yw午夜国产精品视频| 国产午夜精品在线| 久久综合成人精品亚洲另类欧美| 亚洲免费成人av| 一区二区电影免费观看| 久久综合伊人| 国产日韩视频一区二区三区| 久久综合中文| 国产精品久久久久久模特| 国产精品成人一区二区艾草| 欧美日韩大片一区二区三区| 在线日本成人| 欧美伊人精品成人久久综合97| 久久久精品999| 伊伊综合在线| 欧美国产大片| 欧美视频日韩| 在线亚洲免费视频| 国产精品都在这里| 亚洲午夜精品久久久久久app| 日韩一区二区精品在线观看| 欧美一区亚洲一区| 欧美三级小说| 欧美刺激性大交免费视频| 一区二区高清在线观看| 亚洲香蕉成视频在线观看| 久久精品国产一区二区三| 亚洲电影免费| 久久中文久久字幕| 国产精品毛片a∨一区二区三区|国| 99成人免费视频| 欧美自拍偷拍| 国产一区二区三区久久精品| 精品999网站| 欧美日韩国产123| 亚洲成人在线视频播放| 久久视频精品在线| 欧美视频精品在线观看| 亚洲影院色在线观看免费| 亚洲一区二区三区精品在线| 亚洲欧美日韩在线播放| 久久天天躁狠狠躁夜夜av| 国产精品二区影院| 精东粉嫩av免费一区二区三区| 欧美国产高清| 猫咪成人在线观看| 国产精品99久久久久久白浆小说| 一区二区三区av| 亚洲国产日韩欧美在线动漫| 国产精品视频久久久| 一区二区三区免费看| 久久狠狠婷婷| 开元免费观看欧美电视剧网站| 韩国精品在线观看| 国精产品99永久一区一区| 欧美中文字幕在线观看| 国产精品区二区三区日本| 亚洲欧洲另类国产综合| 亚洲盗摄视频| 国外精品视频|