日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH38161、代做R程序設計
代寫MATH38161、代做R程序設計

時間:2024-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国内精品久久久久国产盗摄免费观看完整版| 亚洲精品影院在线观看| 久热综合在线亚洲精品| 日韩一级在线| 一个色综合av| 欧美性大战久久久久久久| 麻豆精品视频在线观看视频| 亚洲成人资源网| 国产一区在线视频| 亚洲日本va午夜在线电影| 99视频一区二区| 美女999久久久精品视频| 免费看成人av| 国产精品任我爽爆在线播放| 99成人精品| 亚洲人成人一区二区三区| 亚洲午夜羞羞片| 欧美在线free| 在线午夜精品| 日韩视频精品在线观看| 国产欧美激情| 亚洲午夜av| 欧美女激情福利| 久久躁狠狠躁夜夜爽| 欧美国产日韩亚洲一区| 欧美绝品在线观看成人午夜影视| 在线免费观看日韩欧美| 欧美日韩三级一区二区| 久久久久九九视频| 国产毛片精品视频| 久久精品国语| 国产精品久久久久9999吃药| 欧美日韩不卡合集视频| 亚洲一区二区毛片| 中文精品99久久国产香蕉| 亚洲综合精品一区二区| 欧美午夜寂寞影院| 欧美视频精品在线| 欧美 日韩 国产在线| 国产精品久久久久久亚洲毛片| 亚洲视频在线观看三级| 欧美国产日韩一区二区三区| 欧美日韩国产限制| 欧美精品亚洲一区二区在线播放| 欧美日韩专区| 国内精品久久久久国产盗摄免费观看完整版| 久久这里只有| 亚洲综合精品自拍| 亚洲婷婷免费| 国产精品视频yy9299一区| 久久久91精品国产一区二区精品| 久久天天综合| 亚洲第一免费播放区| 国产精品久久久久一区二区三区共| 国产精品人人做人人爽人人添| 老鸭窝亚洲一区二区三区| 欧美日韩成人在线观看| 亚洲福利视频在线| 欧美精品免费在线观看| 夜色激情一区二区| 国产免费观看久久黄| 欧美日韩国产精品一区二区亚洲| 亚洲一区二区不卡免费| 国产精品初高中精品久久| 国产一区二区三区高清在线观看| 中文无字幕一区二区三区| 欧美午夜宅男影院在线观看| 欧美mv日韩mv亚洲| 国产专区综合网| 国产精品草莓在线免费观看| 午夜影视日本亚洲欧洲精品| 国产欧美大片| 亚洲三级观看| 另类图片综合电影| 另类天堂视频在线观看| 日韩亚洲在线观看| 久久国产精品黑丝| 在线免费高清一区二区三区| 国产精品嫩草影院一区二区| 欧美日韩在线精品一区二区三区| 亚洲缚视频在线观看| 亚洲精品久久久久久久久久久久久| 国产精品久久波多野结衣| 欧美大片免费看| 欧美国产一区二区三区激情无套| 欧美日韩精品免费在线观看视频| 韩日午夜在线资源一区二区| 欧美fxxxxxx另类| 这里只有精品视频在线| 欧美日韩国产精品一区二区亚洲| 国产精品亚洲综合久久| 欧美一区国产一区| 国产精品一区二区女厕厕| 伊人久久av导航| 欧美日韩激情网| 亚洲午夜国产一区99re久久| 欧美日韩在线视频首页| 欧美女主播在线| 噜噜噜躁狠狠躁狠狠精品视频| 中文精品视频| 国产精品久久久久999| 国产女人18毛片水18精品| 一区二区不卡在线视频 午夜欧美不卡在| 欧美色大人视频| 免费在线视频一区| 久久亚洲私人国产精品va媚药| 欧美精品福利视频| 欧美人在线观看| 国产亚洲人成a一在线v站| 国产欧美va欧美va香蕉在| 国产精品久久久久久久7电影| 欧美午夜精品电影| 亚洲视频观看| 毛片av中文字幕一区二区| 亚洲欧美国产va在线影院| 亚洲一区二区伦理| 激情五月婷婷综合| 男男成人高潮片免费网站| 久久激情网站| 亚洲裸体在线观看| 国产农村妇女毛片精品久久莱园子| 一本综合久久| 在线视频欧美日韩| 国产精品高清免费在线观看| 久久精品人人做人人爽| 国产拍揄自揄精品视频麻豆| 欧美日韩综合视频| 亚洲一区二区在| 久久免费少妇高潮久久精品99| 老牛嫩草一区二区三区日本| 国产精品美女999| 国产欧美大片| 欧美一区二区三区播放老司机| 国产精品免费看片| 一区二区在线观看视频| 欧美日韩国产一区二区三区地区| 久久精品视频免费播放| 免费人成网站在线观看欧美高清| 亚洲精品视频在线看| 久久久av网站| 欧美国内亚洲| 老牛嫩草一区二区三区日本| 欧美成人免费小视频| 韩国一区二区在线观看| 欧美日韩亚洲成人| 黄色成人片子| 久久久久久999| 伊人久久av导航| 久久综合成人精品亚洲另类欧美| 欧美日产在线观看| 国产日韩精品一区二区三区| 亚洲一区不卡| 欧美高清视频一区二区三区在线观看| 影音先锋在线一区| av72成人在线| 国产性做久久久久久| 亚洲激情第一区| 欧美精品成人91久久久久久久| 欧美日韩视频在线观看一区二区三区| 欧美黄色免费| 亚洲国产精品热久久| 999在线观看精品免费不卡网站| 国产精品久久二区| 欧美日韩亚洲精品内裤|