日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

ECE 498代寫、代做Python設計編程
ECE 498代寫、代做Python設計編程

時間:2024-11-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



ECE 498/598 Fall 2024, Homeworks 3 and 4
Remarks:
1. HW3&4: You can reduce the context length to ** if you are having trouble with the
training time.
2. HW3&4: During test evaluation, note that positional encodings for unseen/long
context are not trained. You are supposed to evaluate it as is. It is OK if it doesn’t
work well.
3. HW3&4: Comments are an important component of the HW grade. You are expected
to explain the experimental findings. If you don’t provide technically meaningful
comments, you might receive a lower score even if your code and experiments are
accurate.
4. The deadline for HW3 is November 11th at 11:59 PM, and the deadline for HW4 is
November 18th at 11:59 PM. For each assignment, please submit both your code and a
PDF report that includes your results (figures) for each question. You can generate the
PDF report from a Jupyter Notebook (.ipynb file) by adding comments in markdown
cells.
1
The objective of this assignment is comparing transformer architecture and SSM-type
architectures (specifically Mamba [1]) on the associative recall problem. We provided an
example code recall.ipynb which provides an example implementation using 2 layer
transformer. You will adapt this code to incorporate different positional encodings, use
Mamba layers, or modify dataset generation.
Background: As you recall from the class, associative recall (AR) assesses two abilities
of the model: Ability to locate relevant information and retrieve the context around that
information. AR task can be understood via the following question: Given input prompt
X = [a 1 b 2 c 3 b], we wish the model to locate where the last token b occurs earlier
and output the associated value Y = 2. This is crucial for memory-related tasks or bigram
retrieval (e.g. ‘Baggins’ should follow ‘Bilbo’).
To proceed, let us formally define the associative recall task we will study in the HW.
Definition 1 (Associative Recall Problem) Let Q be the set of target queries with cardinal ity |Q| = k. Consider a discrete input sequence X of the form X = [. . . q v . . . q] where the
query q appears exactly twice in the sequence and the value v follows the first appearance
of q. We say the model f solves AR(k) if f(X) = v for all sequences X with q ∈ Q.
Induction head is a special case of the definition above where the query q is fixed (i.e. Q
is singleton). Induction head is visualized in Figure 1. On the other extreme, we can ask the
model to solve AR for all queries in the vocabulary.
Problem Setting
Vocabulary: Let [K] = {1, . . . , K} be the token vocabulary. Obtain the embedding of
the vocabulary by randomly generating a K × d matrix V with IID N(0, 1) entries, then
normalized its rows to unit length. Here d is the embedding dimension. The embedding of
the i-th token is V[i]. Use numpy.random.seed(0) to ensure reproducibility.
Experimental variables: Finally, for the AR task, Q will simply be the first M elements
of the vocabulary. During experiments, K, d, M are under our control. Besides this we will
also play with two other variables:
• Context length: We will train these models up to context length L. However, we
will evaluate with up to 3L. This is to test the generalization of the model to unseen
lengths.
• Delay: In the basic AR problem, the value v immediately follows q. Instead, we will
introduce a delay variable where v will appear τ tokens after q. τ = 1 is the standard.
Models: The motivation behind this HW is reproducing the results in the Mamba paper.
However, we will also go beyond their evaluations and identify weaknesses of both trans former and Mamba architectures. Specifically, we will consider the following models in our
evaluations:
2
Figure 1: We will work on the associative recall (AR) problem. AR problem requires the
model to retrieve the value associated with all queries whereas the induction head requires
the same for a specific query. Thus, the latter is an easier problem. The figure above is
directly taken from the Mamba paper [1]. The yellow-shaded regions highlight the focus of
this homework.
• Transformer: We will use the transformer architecture with 2 attention layers (no
MLP). We will try the following positional encodings: (i) learned PE (provided code),
(ii) Rotary PE (RoPE), (iii) NoPE (no positional encoding)
• Mamba: We will use the Mamba architecture with 2 layers.
• Hybrid Model: We will use an initial Mamba layer followed by an attention layer.
No positional encoding is used.
Hybrid architectures are inspired by the Mamba paper as well as [2] which observes the
benefit of starting the model with a Mamba layer. You should use public GitHub repos to
find implementations (e.g. RoPE encoding or Mamba layer). As a suggestion, you can use
this GitHub Repo for the Mamba model.
Generating training dataset: During training, you train with minibatch SGD (e.g. with
batch size 64) until satisfactory convergence. You can generate the training sequences for
AR as follows given (K, d, M, L, τ):
1. Training sequence length is equal to L.
2. Sample a query q ∈ Q and a value v ∈ [K] uniformly at random, independently. Recall
that size of Q is |Q| = M.
3. Place q at the end of the sequence and place another q at an index i chosen uniformly
at random from 1 to L − τ.
4. Place value token at the index i + τ.
3
5. Sample other tokens IID from [K]−q i.e. other tokens are drawn uniformly at random
but are not equal to q.
6. Set label token Y = v.
Test evaluation: Test dataset is same as above. However, we will evaluate on all sequence
lengths from τ + 1 to 3L. Note that τ + 2 is the shortest possible sequence.
Empirical Evidence from Mamba Paper: Table 2 of [1] demonstrates that Mamba can do
a good job on the induction head problem i.e. AR with single query. Additionally, Mamba
is the only model that exhibits length generalization, that is, even if you train it pu to context
length L, it can still solve AR for context length beyond L. On the other hand, since Mamba
is inherently a recurrent model, it may not solve the AR problem in its full generality. This
motivates the question: What are the tradeoffs between Mamba and transformer, and can
hybrid models help improve performance over both?
Your assignments are as follows. For each problem, make sure to return the associated
code. These codes can be separate cells (clearly commented) on a single Jupyter/Python file.
Grading structure:
• Problem 1 will count as your HW3 grade. This only involves Induction Head
experiments (i.e. M = 1).
• Problems 2 and 3 will count as your HW4 grade.
• You will make a single submission.
Problem 1 (50=25+15+10pts). Set K = 16, d = 8, L = ** or L = 64.
• Train all models on the induction heads problem (M = 1, τ = 1). After training,
evaluate the test performance and plot the accuracy of all models as a function of
the context length (similar to Table 2 of [1]). In total, you will be plotting 5 curves
(3 Transformers, 1 Mamba, 1 Hybrid). Comment on the findings and compare the
performance of the models including length generalization ability.
• Repeat the experiment above with delay τ = 5. Comment on the impact of delay.
• Which models converge faster during training? Provide a plot of the convergence rate
where the x-axis is the number of iterations and the y-axis is the AR accuracy over a
test batch. Make sure to specify the batch size you are using (ideally use ** or 64).
Problem 2 (30pts). Set K = 16, d = 8, L = ** or L = 64. We will train Mamba, Transformer
with RoPE, and Hybrid. Set τ = 1 (standard AR).
• Train Mamba models for M = 4, 8, 16. Note that M = 16 is the full AR (retrieve any
query). Comment on the results.
• Train Transformer models for M = 4, 8, 16. Comment on the results and compare
them against Mamba’s behavior.
4
• Train the Hybrid model for M = 4, 8, 16. Comment and compare.
Problem 3 (20=15+5pts). Set K = 16, d = 64, L = ** or L = 64. We will only train
Mamba models.
• Set τ = 1 (standard AR). Train Mamba models for M = 4, 8, 16. Compare against the
corresponding results of Problem 2. How does embedding d impact results?
• Train a Mamba model for M = 16 for τ = 10. Comment if any difference.




請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:IEMS5731代做、代寫java設計編程
  • 下一篇:ENGG1110代做、R編程語言代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        在线观看国产精品淫| 亚洲欧洲av一区二区三区久久| 国产日韩欧美麻豆| 国产一区二区精品在线观看| 欧美国产国产综合| 国产日韩欧美精品一区| 欧美高清影院| 久久久久久成人| 亚洲欧美一区二区三区久久| 欧美午夜不卡影院在线观看完整版免费| 欧美日韩中文字幕| 欧美午夜免费电影| 亚洲黄色影院| 欧美日韩1区2区3区| 欧美激情一区二区三级高清视频| 国产欧美日本一区视频| 宅男噜噜噜66国产日韩在线观看| 国产精品日本精品| 国产精品久久婷婷六月丁香| 久久久高清一区二区三区| 性欧美暴力猛交69hd| 麻豆精品一区二区av白丝在线| 黑丝一区二区| 亚洲电影网站| 欧美一区二区三区喷汁尤物| 欧美成人国产一区二区| 欧美精品乱人伦久久久久久| 在线观看亚洲视频啊啊啊啊| av成人免费观看| 在线精品一区二区| 一本久道久久综合狠狠爱| 亚洲另类在线一区| 欧美视频亚洲视频| 亚洲日本一区二区| 日韩网站在线| 模特精品裸拍一区| 久久精品在线播放| 亚洲视频免费在线| 亚洲免费观看高清完整版在线观看熊| 欧美色道久久88综合亚洲精品| 欧美午夜片在线免费观看| 亚洲日本aⅴ片在线观看香蕉| 国产欧美一区二区精品婷婷| 亚洲国产欧美一区二区三区久久| 亚洲精品免费电影| 国产精品久久久久久久一区探花| 一卡二卡3卡四卡高清精品视频| 欧美日韩一区二区在线播放| 欧美午夜视频| 欧美精品1区| 国产老肥熟一区二区三区| 日韩一本二本av| 国产精品美女www爽爽爽视频| 欧美日韩国产一区二区| 欧美精品一级| 欧美日韩精品伦理作品在线免费观看| 欧美激情一区二区三级高清视频| 韩国av一区二区三区在线观看| 久久www免费人成看片高清| 亚洲欧洲在线播放| 国产精品永久在线| 亚洲美女毛片| 亚洲高清三级视频| 国产精品99久久久久久久女警| 国产精品区一区二区三| 免费成人激情视频| 国产精品久久久久久一区二区三区| 免费观看成人网| 国产模特精品视频久久久久| 狠狠色丁香婷婷综合| 亚洲砖区区免费| 99精品免费| 香蕉久久夜色精品国产| 久久夜色精品亚洲噜噜国产mv| 一区视频在线播放| 久久av在线| 亚洲无玛一区| 国产精品大片wwwwww| 国产麻豆日韩欧美久久| 欧美国产免费| 国产精品久久久久国产精品日日| 国产亚洲一区二区精品| 一区精品在线播放| 裸体丰满少妇做受久久99精品| 亚洲人成高清| 国产精品国产a| 亚洲人成在线影院| 亚洲午夜羞羞片| 久久理论片午夜琪琪电影网| 国产亚洲一级| 欧美日韩视频在线| 乱码第一页成人| 亚洲欧美日韩人成在线播放| 国内精品久久久久伊人av| 亚洲国产高清自拍| 亚洲视频在线观看三级| 亚洲伦理自拍| 亚洲成色999久久网站| 欧美视频一区二区三区四区| 欧美极品在线播放| 欧美专区亚洲专区| 亚洲少妇一区| 国产精品免费久久久久久| 99视频国产精品免费观看| 欧美精品在线网站| 欧美日韩亚洲一区二区三区在线观看| 亚洲激情在线播放| 国产综合18久久久久久| 国产精品免费看| 亚洲人成绝费网站色www| 久久午夜精品| 日韩午夜av电影| 国产精品一级在线| 久久成人综合视频| 欧美高清视频www夜色资源网| 亚洲一区二区在线看| 欧美一区激情视频在线观看| 国产一区 二区 三区一级| 久久一区二区三区超碰国产精品| 狠久久av成人天堂| 亚洲第一综合天堂另类专| 欧美一区二区福利在线| 在线亚洲欧美视频| 欧美日韩在线影院| 亚洲国产高清高潮精品美女| 欧美破处大片在线视频| 91久久极品少妇xxxxⅹ软件| 亚洲国产成人精品视频| 亚洲一区二区黄| 亚洲一区国产精品| 国产精品免费观看在线| 美日韩丰满少妇在线观看| 欧美+日本+国产+在线a∨观看| 亚洲尤物视频网| 欧美成人国产va精品日本一级| 欧美在线视频全部完| 韩国av一区二区三区四区| 国产精品99久久久久久久vr| 亚洲精品国产精品国自产观看| 欧美日韩国产综合视频在线观看| 136国产福利精品导航网址应用| 国产精品扒开腿爽爽爽视频| 久久综合色婷婷| 韩日精品在线| 国产一区二区三区在线播放免费观看| 在线观看国产欧美| 国产欧美在线观看一区| 国产欧美精品国产国产专区| 老司机午夜精品视频在线观看| 欧美日韩第一页| 亚洲影视九九影院在线观看| 久久国产免费| 在线免费观看视频一区| 欧美人与性动交α欧美精品济南到| 日韩午夜在线视频| 欧美日韩免费| 欧美午夜不卡| 国产区在线观看成人精品| 国产一区二区成人久久免费影院| 亚洲毛片在线看| 久久精品人人做人人爽电影蜜月| 久久国产欧美| 国产综合欧美在线看| 亚洲午夜久久久久久久久电影院|