日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CPTG1405、代做Python設計程序
代寫CPTG1405、代做Python設計程序

時間:2024-11-14  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assignment 2
CPTG1405, Trimester 3, 2024
1. General matter
1.1. Aims. The purpose of the assignment is to:
• design and implement an interface based on the desired behaviour of an application program;
• practice the use of Python syntax;
• develop problem solving skills.
1.2. Submission. Your program will be stored in a file n amed p olygons.py. A fter y ou h ave d eveloped and
tested your program, upload it using Ed (unless you worked directly in Ed). Assignments can be submitted
more than once; the last version is marked. Your assignment is due by November 11, 9:00am.
1.3. Assessment. The assignment is worth 13 marks. It is going to be tested against a number of input files.
For each test, the automarking script will let your program run for 30 seconds.
Assignments can be submitted up to 5 days after the deadline. The maximum mark obtainable reduces by
5% per full late day, for up to 5 days. Thus if students A and B hand in assignments worth 12 and 11, both
two days late (that is, more than 24 hours late and no more than 48 hours late), then the maximum mark
obtainable is 11.7, so A gets min(11.7, 11) = 11 and B gets min(11.7, 11) = 11. The outputs of your programs
should be exactly as indicated.
1.4. Reminder on plagiarism policy. You are permitted, indeed encouraged, to discuss ways to solve the
assignment with other people. Such discussions must be in terms of algorithms, not code. But you must
implement the solution on your own. Submissions are routinely scanned for similarities that occur when students
copy and modify other people’s work, or work very closely together on a single implementation. Severe penalties
apply.
2. General presentation
You will design and implement a program that will
• extract and analyse the various characteristics of (simple) polygons, their contours being coded and
stored in a file, and
• – either display those characteristics: perimeter, area, convexity, number of rotations that keep the
polygon invariant, and depth (the length of the longest chain of enclosing polygons)
– or output some Latex code, to be stored in a file, from which a pictorial representation of the
polygons can be produced, coloured in a way which is proportional to their area.
Call encoding any 2-dimensional grid of size between between 2 × 2 and 50 × 50 (both dimensions can be
different) all of whose elements are either 0 or 1.
Call neighbour of a member m of an encoding any of the at most eight members of the grid whose value is 1
and each of both indexes differs from m’s corresponding index by at most 1. Given a particular encoding, we
inductively define for all natural numbers d the set of polygons of depth d (for this encoding) as follows. Let a
natural number d be given, and suppose that for all d
0 < d, the set of polygons of depth d
0 has been defined.
Change in the encoding all 1’s that determine those polygons to 0. Then the set of polygons of depth d is
defined as the set of polygons which can be obtained from that encoding by connecting 1’s with some of their
neighbours in such a way that we obtain a maximal polygon (that is, a polygon which is not included in any
other polygon obtained from that encoding by connecting 1’s with some of their neighbours).
1
2
3. Examples
3.1. First example. The file polys_1.txt has the following contents:
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
3
Here is a possible interaction:
$ python3
...
>>> from polygons import *
>>> polys = Polygons('polys_1.txt')
>>> polys.analyse()
Polygon 1:
Perimeter: 78.4
Area: 384.16
Convex: yes
Nb of invariant rotations: 4
Depth: 0
Polygon 2:
Perimeter: 75.2
Area: 353.44
Convex: yes
Nb of invariant rotations: 4
Depth: 1
Polygon 3:
Perimeter: 72.0
Area: **4.00
Convex: yes
Nb of invariant rotations: 4
Depth: 2
Polygon 4:
Perimeter: 68.8
Area: 295.84
Convex: yes
Nb of invariant rotations: 4
Depth: 3
Polygon 5:
Perimeter: 65.6
Area: 268.96
Convex: yes
Nb of invariant rotations: 4
Depth: 4
Polygon 6:
Perimeter: 62.4
Area: 243.36
Convex: yes
Nb of invariant rotations: 4
Depth: 5
Polygon 7:
Perimeter: 59.2
Area: 219.04
Convex: yes
Nb of invariant rotations: 4
Depth: 6
Polygon 8:
Perimeter: 56.0
Area: 196.00
Convex: yes
Nb of invariant rotations: 4
4
Depth: 7
Polygon 9:
Perimeter: 52.8
Area: 174.24
Convex: yes
Nb of invariant rotations: 4
Depth: 8
Polygon 10:
Perimeter: 49.6
Area: 153.76
Convex: yes
Nb of invariant rotations: 4
Depth: 9
Polygon 11:
Perimeter: 46.4
Area: 134.56
Convex: yes
Nb of invariant rotations: 4
Depth: 10
Polygon 12:
Perimeter: 43.2
Area: 116.64
Convex: yes
Nb of invariant rotations: 4
Depth: 11
Polygon 13:
Perimeter: 40.0
Area: 100.00
Convex: yes
Nb of invariant rotations: 4
Depth: 12
Polygon 14:
Perimeter: 36.8
Area: 84.64
Convex: yes
Nb of invariant rotations: 4
Depth: 13
Polygon 15:
Perimeter: 33.6
Area: 70.56
Convex: yes
Nb of invariant rotations: 4
Depth: 14
Polygon 16:
Perimeter: 30.4
Area: 57.76
Convex: yes
Nb of invariant rotations: 4
Depth: 15
Polygon 17:
Perimeter: 27.2
Area: 46.24
Convex: yes
Nb of invariant rotations: 4
5
Depth: 16
Polygon 18:
Perimeter: 24.0
Area: 36.00
Convex: yes
Nb of invariant rotations: 4
Depth: 17
Polygon 19:
Perimeter: 20.8
Area: 27.04
Convex: yes
Nb of invariant rotations: 4
Depth: 18
Polygon 20:
Perimeter: 17.6
Area: 19.36
Convex: yes
Nb of invariant rotations: 4
Depth: 19
Polygon 21:
Perimeter: 14.4
Area: 12.96
Convex: yes
Nb of invariant rotations: 4
Depth: 20
Polygon 22:
Perimeter: 11.2
Area: 7.84
Convex: yes
Nb of invariant rotations: 4
Depth: 21
Polygon 23:
Perimeter: 8.0
Area: 4.00
Convex: yes
Nb of invariant rotations: 4
Depth: 22
Polygon 24:
Perimeter: 4.8
Area: 1.44
Convex: yes
Nb of invariant rotations: 4
Depth: 23
Polygon 25:
Perimeter: 1.6
Area: 0.16
Convex: yes
Nb of invariant rotations: 4
Depth: 24
>>> polys.display()
6
The effect of executing polys.display() is to produce a file named polys_1.tex that can be given as
argument to pdflatex to produce a file named polys_1.pdf that views as follows.
7
3.2. Second example. The file polys_2.txt has the following contents:
00000000000000000000000000000000000000000000000000
01111111111111111111111111111111111111111111111110
00111111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111000
01001111111111111111111111111111111111111111110010
01100111111111111111111111111111111111111111100110
01110011111111111111111111111111111111111111001110
01111001111111111111111111111111111111111110011110
01111100111111111111111111111111111111111100111110
01111110011111111111111111111111111111111001111110
01111111001111111111111111111111111111110011111110
01111111100111111111111111111111111111100111111110
01111111110011111111111111111111111111001111111110
01111111111001111111111111111111111110011111111110
01111111111100111111111111111111111100111111111110
01111111111110011111111111111111111001111111111110
01111111111111001111111111111111110011111111111110
01111111111111100111111111111111100111111111111110
01111111111111110011111111111111001111111111111110
01111111111111111001111111111110011111111111111110
01111111111111111100111111111100111111111111111110
01111111111111111110011111111001111111111111111110
01111111111111111111001111110011111111111111111110
01111111111111111111100111100111111111111111111110
01111111111011111111110011001111111111011111111110
01111111111111111111100111100111111111111111111110
01111111111111111111001111110011111111111111111110
01111111111111111110011111111001111111111111111110
01111111111111111100111111111100111111111111111110
01111111111111111001111111111110011111111111111110
01111111111111110011111111111111001111111111111110
01111111111111100111111111111111100111111111111110
01111111111111001111111111111111110011111111111110
01111111111110011111111111111111111001111111111110
01111111111100111111111111111111111100111111111110
01111111111001111111111111111111111110011111111110
01111111110011111111111111111111111111001111111110
01111111100111111111111111111111111111100111111110
01111111001111111111111111111111111111110011111110
01111110011111111111111111111111111111111001111110
01111100111111111111111111111111111111111100111110
01111001111111111111111111111111111111111110011110
01110011111111111111111111111111111111111111001110
01100111111111111111111111111111111111111111100110
01001111111111111111111111111111111111111111110010
00011111111111111111111111111111111111111111111000
00111111111111111111111111111111111111111111111100
01111111111111111111111111111111111111111111111110
00000000000000000000000000000000000000000000000000
8
Here is a possible interaction:
$ python3
...
>>> from polygons import *
>>> polys = Polygons('polys_2.txt')
>>> polys.analyse()
Polygon 1:
Perimeter: 37.6 + 92*sqrt(.**)
Area: 176.64
Convex: no
Nb of invariant rotations: 2
Depth: 0
Polygon 2:
Perimeter: 17.6 + 42*sqrt(.**)
Area: **.92
Convex: yes
Nb of invariant rotations: 1
Depth: 1
Polygon 3:
Perimeter: 16.0 + 38*sqrt(.**)
Area: 60.80
Convex: yes
Nb of invariant rotations: 1
Depth: 2
Polygon 4:
Perimeter: 16.0 + 40*sqrt(.**)
Area: 64.00
Convex: yes
Nb of invariant rotations: 1
Depth: 0
Polygon 5:
Perimeter: 14.4 + 34*sqrt(.**)
Area: 48.96
Convex: yes
Nb of invariant rotations: 1
Depth: 3
Polygon 6:
Perimeter: 16.0 + 40*sqrt(.**)
Area: 64.00
Convex: yes
Nb of invariant rotations: 1
Depth: 0
Polygon 7:
Perimeter: 12.8 + 30*sqrt(.**)
Area: 38.40
Convex: yes
Nb of invariant rotations: 1
Depth: 4
Polygon 8:
Perimeter: 14.4 + 36*sqrt(.**)
Area: 51.84
Convex: yes
Nb of invariant rotations: 1
9
Depth: 1
Polygon 9:
Perimeter: 11.2 + 26*sqrt(.**)
Area: 29.12
Convex: yes
Nb of invariant rotations: 1
Depth: 5
Polygon 10:
Perimeter: 14.4 + 36*sqrt(.**)
Area: 51.84
Convex: yes
Nb of invariant rotations: 1
Depth: 1
Polygon 11:
Perimeter: 9.6 + 22*sqrt(.**)
Area: 21.12
Convex: yes
Nb of invariant rotations: 1
Depth: 6
Polygon 12:
Perimeter: 12.8 + ***sqrt(.**)
Area: 40.96
Convex: yes
Nb of invariant rotations: 1
Depth: 2
Polygon 13:
Perimeter: 8.0 + 18*sqrt(.**)
Area: 14.40
Convex: yes
Nb of invariant rotations: 1
Depth: 7
Polygon 14:
Perimeter: 12.8 + ***sqrt(.**)
Area: 40.96
Convex: yes
Nb of invariant rotations: 1
Depth: 2
Polygon 15:
Perimeter: 6.4 + 14*sqrt(.**)
Area: 8.96
Convex: yes
Nb of invariant rotations: 1
Depth: 8
Polygon 16:
Perimeter: 11.2 + 28*sqrt(.**)
Area: 31.36
Convex: yes
Nb of invariant rotations: 1
Depth: 3
Polygon 17:
Perimeter: 4.8 + 10*sqrt(.**)
Area: 4.80
Convex: yes
Nb of invariant rotations: 1
10
Depth: 9
Polygon 18:
Perimeter: 11.2 + 28*sqrt(.**)
Area: 31.36
Convex: yes
Nb of invariant rotations: 1
Depth: 3
Polygon 19:
Perimeter: 3.2 + 6*sqrt(.**)
Area: 1.92
Convex: yes
Nb of invariant rotations: 1
Depth: 10
Polygon 20:
Perimeter: 9.6 + 24*sqrt(.**)
Area: 23.04
Convex: yes
Nb of invariant rotations: 1
Depth: 4
Polygon 21:
Perimeter: 1.6 + 2*sqrt(.**)
Area: 0.**
Convex: yes
Nb of invariant rotations: 1
Depth: 11
Polygon 22:
Perimeter: 9.6 + 24*sqrt(.**)
Area: 23.04
Convex: yes
Nb of invariant rotations: 1
Depth: 4
Polygon 23:
Perimeter: 8.0 + 20*sqrt(.**)
Area: 16.00
Convex: yes
Nb of invariant rotations: 1
Depth: 5
Polygon 24:
Perimeter: 8.0 + 20*sqrt(.**)
Area: 16.00
Convex: yes
Nb of invariant rotations: 1
Depth: 5
Polygon 25:
Perimeter: 6.4 + 16*sqrt(.**)
Area: 10.24
Convex: yes
Nb of invariant rotations: 1
Depth: 6
Polygon 26:
Perimeter: 6.4 + 16*sqrt(.**)
Area: 10.24
Convex: yes
Nb of invariant rotations: 1
11
Depth: 6
Polygon 27:
Perimeter: 4.8 + 12*sqrt(.**)
Area: 5.76
Convex: yes
Nb of invariant rotations: 1
Depth: 7
Polygon 28:
Perimeter: 4.8 + 12*sqrt(.**)
Area: 5.76
Convex: yes
Nb of invariant rotations: 1
Depth: 7
Polygon 29:
Perimeter: 3.2 + 8*sqrt(.**)
Area: 2.56
Convex: yes
Nb of invariant rotations: 1
Depth: 8
Polygon 30:
Perimeter: 3.2 + 8*sqrt(.**)
Area: 2.56
Convex: yes
Nb of invariant rotations: 1
Depth: 8
Polygon 31:
Perimeter: 1.6 + 4*sqrt(.**)
Area: 0.64
Convex: yes
Nb of invariant rotations: 1
Depth: 9
Polygon **:
Perimeter: 1.6 + 4*sqrt(.**)
Area: 0.64
Convex: yes
Nb of invariant rotations: 1
Depth: 9
Polygon 33:
Perimeter: 17.6 + 42*sqrt(.**)
Area: **.92
Convex: yes
Nb of invariant rotations: 1
Depth: 1
Polygon 34:
Perimeter: 16.0 + 38*sqrt(.**)
Area: 60.80
Convex: yes
Nb of invariant rotations: 1
Depth: 2
Polygon 35:
Perimeter: 14.4 + 34*sqrt(.**)
Area: 48.96
Convex: yes
Nb of invariant rotations: 1
12
Depth: 3
Polygon 36:
Perimeter: 12.8 + 30*sqrt(.**)
Area: 38.40
Convex: yes
Nb of invariant rotations: 1
Depth: 4
Polygon 37:
Perimeter: 11.2 + 26*sqrt(.**)
Area: 29.12
Convex: yes
Nb of invariant rotations: 1
Depth: 5
Polygon 38:
Perimeter: 9.6 + 22*sqrt(.**)
Area: 21.12
Convex: yes
Nb of invariant rotations: 1
Depth: 6
Polygon 39:
Perimeter: 8.0 + 18*sqrt(.**)
Area: 14.40
Convex: yes
Nb of invariant rotations: 1
Depth: 7
Polygon 40:
Perimeter: 6.4 + 14*sqrt(.**)
Area: 8.96
Convex: yes
Nb of invariant rotations: 1
Depth: 8
Polygon 41:
Perimeter: 4.8 + 10*sqrt(.**)
Area: 4.80
Convex: yes
Nb of invariant rotations: 1
Depth: 9
Polygon 42:
Perimeter: 3.2 + 6*sqrt(.**)
Area: 1.92
Convex: yes
Nb of invariant rotations: 1
Depth: 10
Polygon 43:
Perimeter: 1.6 + 2*sqrt(.**)
Area: 0.**
Convex: yes
Nb of invariant rotations: 1
Depth: 11
>>> polys.display()
13
The effect of executing polys.display() is to produce a file named polys_2.tex that can be given as
argument to pdflatex to produce a file named polys_2.pdf that views as follows.
14
3.3. Third example. The file polys_3.txt has the following contents:
0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0
1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1
0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0
0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1
1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1
1 1 0 0 1 1 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 0 1 1
1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1
1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1
1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1
1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1
1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0
1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1
0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0
15
Here is a possible interaction:
$ python3
...
>>> from polygons import *
>>> polys = Polygons('polys_3.txt')
>>> polys.analyse()
Polygon 1:
Perimeter: 2.4 + 9*sqrt(.**)
Area: 2.80
Convex: no
Nb of invariant rotations: 1
Depth: 0
Polygon 2:
Perimeter: 51.2 + 4*sqrt(.**)
Area: 117.28
Convex: no
Nb of invariant rotations: 2
Depth: 0
Polygon 3:
Perimeter: 2.4 + 9*sqrt(.**)
Area: 2.80
Convex: no
Nb of invariant rotations: 1
Depth: 0
Polygon 4:
Perimeter: 17.6 + 40*sqrt(.**)
Area: 59.04
Convex: no
Nb of invariant rotations: 2
Depth: 1
Polygon 5:
Perimeter: 3.2 + 28*sqrt(.**)
Area: 9.76
Convex: no
Nb of invariant rotations: 1
Depth: 2
Polygon 6:
Perimeter: 27.2 + 6*sqrt(.**)
Area: 5.76
Convex: no
Nb of invariant rotations: 1
Depth: 2
Polygon 7:
Perimeter: 4.8 + 14*sqrt(.**)
Area: 6.72
Convex: no
Nb of invariant rotations: 1
Depth: 1
Polygon 8:
Perimeter: 4.8 + 14*sqrt(.**)
Area: 6.72
Convex: no
Nb of invariant rotations: 1
16
Depth: 1
Polygon 9:
Perimeter: 3.2 + 2*sqrt(.**)
Area: 1.12
Convex: yes
Nb of invariant rotations: 1
Depth: 2
Polygon 10:
Perimeter: 3.2 + 2*sqrt(.**)
Area: 1.12
Convex: yes
Nb of invariant rotations: 1
Depth: 2
Polygon 11:
Perimeter: 2.4 + 9*sqrt(.**)
Area: 2.80
Convex: no
Nb of invariant rotations: 1
Depth: 0
Polygon 12:
Perimeter: 2.4 + 9*sqrt(.**)
Area: 2.80
Convex: no
Nb of invariant rotations: 1
Depth: 0
>>> polys.display()
The effect of executing polys.display() is to produce a file named polys_3.tex that can be given as
argument to pdflatex to produce a file named polys_3.pdf that views as follows.
17
3.4. Fourth example. The file polys_4.txt has the following contents:
1 1 101 11 0 1 1 1 0 1 1 1011 10 1 1 1 0 000 1 1 1 0 00 1 001 11 1
01 01000100010001000100100 110010010101001
100 0010 0 0 1 00 0 1 0 00 100 01000 100 0 1 01 0001011 1
1000101010101010101000100101010100010000
0100010001000100010000100010100011100011
100 1 0 0 0 10 0 0 1 00 0 1 00 01 010 000 0000 0 0 0 0 00 01 11
11101 1101110 1 1 1 0111011101100000001111000
000000000000000000000001100000011000100 0
1 111001100111111100000000111111000 010000
110 01 0 1 1 0 1011111100011111000000000001000
001 1000011 10 000000000 11111111111111111 00
18
Here is a possible interaction:
$ python3
...
>>> from polygons import *
>>> polys = Polygons('polys_4.txt')
>>> polys.analyse()
Polygon 1:
Perimeter: 11.2 + 28*sqrt(.**)
Area: 18.88
Convex: no
Nb of invariant rotations: 2
Depth: 0
Polygon 2:
Perimeter: 3.2 + 5*sqrt(.**)
Area: 2.00
Convex: no
Nb of invariant rotations: 1
Depth: 0
Polygon 3:
Perimeter: 1.6 + 6*sqrt(.**)
Area: 1.76
Convex: yes
Nb of invariant rotations: 1
Depth: 0
Polygon 4:
Perimeter: 3.2 + 1*sqrt(.**)
Area: 0.88
Convex: yes
Nb of invariant rotations: 1
Depth: 0
Polygon 5:
Perimeter: 4*sqrt(.**)
Area: 0.**
Convex: yes
Nb of invariant rotations: 4
Depth: 1
Polygon 6:
Perimeter: 4*sqrt(.**)
Area: 0.**
Convex: yes
Nb of invariant rotations: 4
Depth: 1
Polygon 7:
Perimeter: 4*sqrt(.**)
Area: 0.**
Convex: yes
Nb of invariant rotations: 4
Depth: 1
Polygon 8:
Perimeter: 4*sqrt(.**)
Area: 0.**
Convex: yes
Nb of invariant rotations: 4
19
Depth: 1
Polygon 9:
Perimeter: 1.6 + 1*sqrt(.**)
Area: 0.24
Convex: yes
Nb of invariant rotations: 1
Depth: 0
Polygon 10:
Perimeter: 0.8 + 2*sqrt(.**)
Area: 0.16
Convex: yes
Nb of invariant rotations: 2
Depth: 0
Polygon 11:
Perimeter: 12.0 + 7*sqrt(.**)
Area: 5.68
Convex: no
Nb of invariant rotations: 1
Depth: 0
Polygon 12:
Perimeter: 2.4 + 3*sqrt(.**)
Area: 0.88
Convex: no
Nb of invariant rotations: 1
Depth: 0
Polygon 13:
Perimeter: 1.6
Area: 0.16
Convex: yes
Nb of invariant rotations: 4
Depth: 0
Polygon 14:
Perimeter: 5.6 + 3*sqrt(.**)
Area: 1.36
Convex: no
Nb of invariant rotations: 1
Depth: 0
>>> polys.display()
The effect of executing polys.display() is to produce a file named polys_4.tex that can be given as
argument to pdflatex to produce a file named polys_4.pdf that views as follows.
20
4. Detailed description
4.1. Input. The input is expected to consist of ydim lines of xdim 0’s and 1’s, where xdim and ydim are at
least equal to 2 and at most equal to 50, with possibly lines consisting of spaces only that will be ignored and
with possibly spaces anywhere on the lines with digits. If n is the x
th digit of the y
th line with digits, with
0 ≤ x < xdim and 0 ≤ y < ydim , then n is to be associated with a point situated x × 0.4 cm to the right and
y × 0.4 cm below an origin.
4.2. Output. Consider executing from the Python prompt the statement from polygons import * followed
by the statement polys = Polygons(some_filename). In case some_filename does not exist in the working
directory, then Python will raise a FileNotFoundError exception, that does not need to be caught. Assume
that some_filename does exist (in the working directory). If the input is incorrect in that it does not contain
only 0’s and 1’a besides spaces, or in that it contains either too few or too many lines of digits, or in that
some line of digits contains too many or too few digits, or in that two of its lines of digits do not contain the
same number of digits, then the effect of executing polys = Polygons(some_filename) should be to generate
a PolygonsError exception that reads
Traceback (most recent call last):
...
polygons.PolygonsError: Incorrect input.
If the previous conditions hold but it is not possible to use all 1’s in the input and make them the contours
of polygons of depth d, for any natural number d, as defined in the general presentation, then the effect of
executing polys = Polygons(some_filename) should be to generate a PolygonsError exception that reads
Traceback (most recent call last):
...
polygons.PolygonsError: Cannot get polygons as expected.
If the input is correct and it is possible to use all 1’s in the input and make them the contours of polygons
of depth d, for any natural number d, as defined in the general presentation, then executing the statement
polys = Polygons(some_filename) followed by polys.analyse() should have the effect of outputting a first
line that reads
Polygon N:
with N an appropriate integer at least equal to 1 to refer to the N’th polygon listed in the order of polygons
with highest point from smallest value of y to largest value of y, and for a given value of y, from smallest value
of x to largest value of x, a second line that reads one of
Perimeter: a + b*sqrt(.**)
Perimeter: a
Perimeter: b*sqrt(.**)
with a an appropriate strictly positive floating point number with 1 digit after the decimal point and b an
appropriate strictly positive integer, a third line that reads
Area: a
with a an appropriate floating point number with 2 digits after the decimal point, a fourth line that reads one
of
Convex: yes
Convex: no
a fifth line that reads
Nb of invariant rotations: N
21
with N an appropriate integer at least equal to 1, and a sixth line that reads
Depth: N
with N an appropriate positive integer (possibly 0).
Pay attention to the expected format, including spaces.
If the input is correct and it is possible to use all 1’s in the input and make them the contours of poly gons of depth d, for any natural number d, as defined in the general presentation, then executing the state ment polys = Polygons(some_filename) followed by polys.display() should have the effect of produc ing a file named some_filename.tex that can be given as argument to pdflatex to generate a file named
some_filename.pdf. The provided examples will show you what some_filename.tex should contain.
• Polygons are drawn from lowest to highest depth, and for a given depth, the same ordering as previously
described is used.
• The point that determines the polygon index is used as a starting point in drawing the line segments
that make up the polygon, in a clockwise manner.
• A polygons’s colour is determined by its area. The largest polygons are yellow. The smallest polygons
are orange. Polygons in-between mix orange and yellow in proportion of their area. For instance, a
polygon whose size is 25% the difference of the size between the largest and the smallest polygon will
receive 25% of orange (and 75% of yellow). That proportion is computed as an integer. When the value
is not an integer, it is rounded to the closest integer, with values of the form z.5 rounded up to z + 1.
Pay attention to the expected format, including spaces and blank lines. Lines that start with % are comments.
The output of your program redirected to a file will be compared with the expected output saved in a file (of a
different name of course) using the diff command. For your program to pass the associated test, diff should
silently exit, which requires that the contents of both files be absolutely identical, character for character,
including spaces and blank lines. Check your program on the provided examples using the associated .tex files,
renaming them as they have the names of the files expected to be generated by your program.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp








 

掃一掃在手機打開當前頁
  • 上一篇:代寫CPTG1405、代做Python設計程序
  • 下一篇:代做CHC5028、C/C++語言程序代寫
  • ·代寫CPTG1405、代做Python設計程序
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        日韩西西人体444www| 欧美粗暴jizz性欧美20| 欧美视频二区36p| 欧美在线观看网址综合| 欧美日韩国产精品一区二区亚洲| 欧美一区二区三区在线观看| 亚洲精品一区久久久久久| 欧美日本一区| 午夜精品久久久久影视| 尤物99国产成人精品视频| 欧美风情在线| 亚洲第一在线综合网站| 男人的天堂亚洲| 亚洲欧美三级伦理| 欧美猛交免费看| 在线成人激情视频| 亚洲国产高清aⅴ视频| 在线视频观看日韩| 国产亚洲欧美aaaa| 免费不卡在线观看| 国产中文一区二区| 在线观看欧美成人| 国产一区二区三区黄| 国产精品久久波多野结衣| 精品粉嫩aⅴ一区二区三区四区| 国产精品va在线| 国产一区二区三区在线观看精品| 国产一区二区三区久久精品| 国产精品久久久久久影院8一贰佰| 欧美一级播放| 久久精品人人爽| 男人的天堂成人在线| 国产精品红桃| 久久久在线视频| 亚洲午夜精品福利| 欧美精品色综合| 国产伦精品一区二区三区四区免费| 一本色道久久综合亚洲91| 欧美国产综合一区二区| 久久久久网址| 欧美日韩在线不卡| 国产精品久久久久一区二区| 免费欧美高清视频| 国产欧美日韩一区二区三区| 激情五月***国产精品| 欧美 亚欧 日韩视频在线| 蜜桃av一区二区| 欧美激情欧美狂野欧美精品| 日韩一区二区电影网| 欧美高清视频一区二区三区在线观看| 亚洲精品视频啊美女在线直播| 亚洲视频国产视频| 国产自产女人91一区在线观看| 久久综合网色—综合色88| 亚洲日本免费| 国产精品国产成人国产三级| 国产精品成人一区二区三区夜夜夜| 在线观看亚洲精品| 亚洲激情啪啪| 日韩亚洲国产欧美| 亚洲美女在线视频| 久热精品在线| 亚洲欧美综合| 蜜臀av性久久久久蜜臀aⅴ四虎| 伊人久久亚洲热| 欧美mv日韩mv国产网站app| 欧美另类高清视频在线| 亚洲国产精品专区久久| 国产精品欧美久久| 亚洲自拍偷拍福利| 亚洲一区二区三区免费在线观看| 欧美成人精精品一区二区频| 国产一区二区三区久久悠悠色av| 亚洲天堂免费在线观看视频| 国产精品99久久久久久久久久久久| 国产麻豆精品久久一二三| 欧美夫妇交换俱乐部在线观看| 黑丝一区二区三区| 日韩写真在线| 国内自拍视频一区二区三区| 国产精品二区三区四区| 国产精品日韩一区二区三区| 黄色免费成人| 国产欧美午夜| 欧美一级免费视频| 欧美一区亚洲一区| 国产网站欧美日韩免费精品在线观看| 久久精品国产99国产精品澳门| 午夜在线精品| 伊人成年综合电影网| 一二三区精品| 亚洲人成77777在线观看网| 久久久久国产精品麻豆ai换脸| 国产欧美综合一区二区三区| 欧美一区三区二区在线观看| 日韩视频免费观看| 99视频在线精品国自产拍免费观看| 欧美精品少妇一区二区三区| 欧美黄色aaaa| 西西人体一区二区| 国产亚洲精品bt天堂精选| 亚洲欧美日韩一区二区三区在线观看| 久久久久天天天天| 亚洲一卡二卡三卡四卡五卡| 亚洲欧美日韩综合| 久久夜色精品亚洲噜噜国产mv| 国产精品日本精品| 亚洲人线精品午夜| 国产日韩视频| 久久久亚洲国产天美传媒修理工| 国产精品草草| 亚洲图片在线观看| 欧美日韩无遮挡| 久久国产精品免费一区| 亚洲国产精品v| 欧美激情四色| 欧美99久久| 国产一区二区三区最好精华液| 一区二区电影免费观看| 亚洲国产欧美一区二区三区丁香婷| 欧美成人a视频| 国内外成人免费视频| 欧美一区二区在线视频| 亚洲一区三区电影在线观看| 国产日韩欧美亚洲| 蜜桃av一区二区三区| 亚洲伦理在线免费看| 国产精品一区久久| 欧美成年人视频网站欧美| 合欧美一区二区三区| 欧美精品成人91久久久久久久| 国产精品家庭影院| 国产精品青草综合久久久久99| 欧美日韩日本国产亚洲在线| 伊人成人在线视频| 国产精品对白刺激久久久| 亚洲欧美日韩精品在线| 亚洲天堂视频在线观看| 欧美日韩精品欧美日韩精品| 狠狠狠色丁香婷婷综合久久五月| 伊人婷婷欧美激情| 亚洲二区在线观看| 久久久国产视频91| 亚洲一区二区三区三| 麻豆精品在线播放| 国产精品系列在线播放| 久久女同互慰一区二区三区| 99视频超级精品| 一区二区三区无毛| 国产精品一级久久久| 亚洲欧美激情视频| 国产精品亚洲网站| 玖玖玖国产精品| 国产一区二区三区日韩| 亚洲欧美在线一区二区| 亚洲美女av电影| 欧美亚洲免费电影| 国产人成一区二区三区影院| 91久久久久久久久久久久久| 国产精品美女主播在线观看纯欲| 国产欧美精品日韩区二区麻豆天美| 在线免费观看一区二区三区| 欧美成人午夜激情| 久久av老司机精品网站导航|