日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫Neural Networks for Image 編程
代寫Neural Networks for Image 編程

時間:2024-11-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Lab 2: Neural Networks for Image 
Classification
Duration: 2 hours
Tools:
• Jupyter Notebook
• IDE: PyCharm==2024.2.3 (or any IDE of your choice)
• Python: 3.12
• Libraries:
o PyTorch==2.4.0
o TorchVision==0.19.0
o Matplotlib==3.9.2
Learning Objectives:
• Understand the basic architecture of a neural network.
• Load and explore the CIFAR-10 dataset.
• Implement and train a neural network, individualized by your QMUL ID.
• Verify machine learning concepts such as accuracy, loss, and evaluation metrics 
by running predefined code.
Lab Outline:
In this lab, you will implement a simple neural network model to classify images from 
the CIFAR-10 dataset. The task will be individualized based on your QMUL ID to ensure 
unique configurations for each student.
1. Task 1: Understanding the CIFAR-10 Dataset
• The CIFAR-10 dataset consists of 60,000 **x** color images categorized into 10 
classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
• The dataset is divided into 50,000 training images and 10,000 testing images.
• You will load the CIFAR-10 dataset using PyTorch’s built-in torchvision library.
Step-by-step Instructions:
1. Open the provided Jupyter Notebook.
2. Load and explore the CIFAR-10 dataset using the following code:
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# Basic transformations for the CIFAR-10 dataset
transform = transforms.Compose([transforms.ToTensor(), 
transforms.Normalize((0.5,), (0.5,))])
# Load the CIFAR-10 dataset
dataset = datasets.CIFAR10(root='./data', train=True, 
download=True, transform=transform)
2. Task 2: Individualized Neural Network Implementation, Training, and Test
You will implement a neural network model to classify images from the CIFAR-10 
dataset. However, certain parts of the task will be individualized based on your QMUL 
ID. Follow the instructions carefully to ensure your model’s configuration is unique.
Step 1: Dataset Split Based on Your QMUL ID
You will use the last digit of your QMUL ID to define the training-validation split:
• If your ID ends in 0-4: use a 70-30 split (70% training, 30% validation).
• If your ID ends in 5-9: use an 80-20 split (80% training, 20% validation).
Code:
from torch.utils.data import random_split
# Set the student's last digit of the ID (replace with 
your own last digit)
last_digit_of_id = 7 # Example: Replace this with the 
last digit of your QMUL ID
# Define the split ratio based on QMUL ID
split_ratio = 0.7 if last_digit_of_id <= 4 else 0.8
# Split the dataset
train_size = int(split_ratio * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, 
[train_size, val_size])
# DataLoaders
from torch.utils.data import DataLoader
batch_size = ** + last_digit_of_id # Batch size is ** + 
last digit of your QMUL ID
train_loader = DataLoader(train_dataset, 
batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, 
batch_size=batch_size, shuffle=False)
print(f"Training on {train_size} images, Validating on 
{val_size} images.")
Step 2: Predefined Neural Network Model
You will use a predefined neural network architecture provided in the lab. The model’s 
hyperparameters will be customized based on your QMUL ID.
1. Learning Rate: Set the learning rate to 0.001 + (last digit of your QMUL ID * 
0.0001).
2. Number of Epochs: Train your model for 10 + (last digit of your QMUL ID) 
epochs.
Code:
import torch
import torch.optim as optim
# Define the model
model = torch.nn.Sequential(
 torch.nn.Flatten(),
 torch.nn.Linear(******3, 512),
 torch.nn.ReLU(),
 torch.nn.Linear(512, 10) # 10 output classes for 
CIFAR-10
)
# Loss function and optimizer
criterion = torch.nn.CrossEntropyLoss()
# Learning rate based on QMUL ID
learning_rate = 0.001 + (last_digit_of_id * 0.0001)
optimizer = optim.Adam(model.parameters(), 
lr=learning_rate)
# Number of epochs based on QMUL ID
num_epochs = 100 + last_digit_of_id
print(f"Training for {num_epochs} epochs with learning 
rate {learning_rate}.")
Step 3: Model Training and Evaluation
Use the provided training loop to train your model and evaluate it on the validation set. 
Track the loss and accuracy during the training process.
Expected Output: For training with around 100 epochs, it may take 0.5~1 hour to finish. 
You may see a lower accuracy, especially for the validation accuracy, due to the lower 
number of epochs or the used simple neural network model, etc. If you are interested, 
you can find more advanced open-sourced codes to test and improve the performance. 
In this case, it may require a long training time on the CPU-based device.
Code:
# Training loop
train_losses = [] 
train_accuracies = []
val_accuracies = []
for epoch in range(num_epochs):
 model.train()
 running_loss = 0.0
 correct = 0
 total = 0
 for inputs, labels in train_loader:
 optimizer.zero_grad()
 outputs = model(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 
 running_loss += loss.item()
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 train_accuracy = 100 * correct / total
 print(f"Epoch {epoch+1}/{num_epochs}, Loss: 
{running_loss:.4f}, Training Accuracy: 
{train_accuracy:.2f}%")
 
 # Validation step
 model.eval()
 correct = 0
 total = 0
 with torch.no_grad():
 for inputs, labels in val_loader:
 outputs = model(inputs)
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 
 val_accuracy = 100 * correct / total
 print(f"Validation Accuracy after Epoch {epoch + 1}: 
{val_accuracy:.2f}%")
 train_losses.append(running_loss) 
 train_accuracies.append(train_accuracy)
 val_accuracies.append(val_accuracy)
Task 3: Visualizing and Analyzing the Results
Visualize the results of the training and validation process. Generate the following plots 
using Matplotlib:
• Training Loss vs. Epochs.
• Training and Validation Accuracy vs. Epochs.
Code for Visualization:
import matplotlib.pyplot as plt
# Plot Loss
plt.figure()
plt.plot(range(1, num_epochs + 1), train_losses, 
label="Training Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Training Loss")
plt.legend()
plt.show()
# Plot Accuracy
plt.figure()
plt.plot(range(1, num_epochs + 1), train_accuracies, 
label="Training Accuracy")
plt.plot(range(1, num_epochs + 1), val_accuracies, 
label="Validation Accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.title("Training and Validation Accuracy")
plt.legend()
plt.show()
Lab Report Submission and Marking Criteria
After completing the lab, you need to submit a report that includes:
1. Individualized Setup (20/100):
o Clearly state the unique configurations used based on your QMUL ID, 
including dataset split, number of epochs, learning rate, and batch size.
2. Neural Network Architecture and Training (30/100):
o Provide an explanation of the model architecture (i.e., the number of input 
layer, hidden layer, and output layer, activation function) and training 
procedure (i.e., the used optimizer).
o Include the plots of training loss, training and validation accuracy.
3. Results Analysis (30/100):
o Provide analysis of the training and validation performance.
o Reflect on whether the model is overfitting or underfitting based on the 
provided results.
4. Concept Verification (20/100):
o Answer the provided questions below regarding machine learning 
concepts.
(1) What is overfitting issue? List TWO methods for addressing the overfitting 
issue.
(2) What is the role of loss function? List TWO representative loss functions.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:CPSC 471代寫、代做Python語言程序
  • 下一篇:代做INT2067、Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        美女露胸一区二区三区| 国产欧美一区二区三区沐欲| 在线亚洲自拍| 亚洲激情欧美激情| 一卡二卡3卡四卡高清精品视频| 国产伦理精品不卡| 亚洲一区在线播放| 99国产精品| 麻豆乱码国产一区二区三区| 国产精品久久久久av免费| 亚洲线精品一区二区三区八戒| 国产一在线精品一区在线观看| 日韩一区二区免费看| 在线视频免费在线观看一区二区| 国内精品久久久久久久影视蜜臀| 免费观看成人鲁鲁鲁鲁鲁视频| 欧美激情黄色片| 亚洲免费观看在线视频| 久久亚裔精品欧美| 欧美一区二区三区四区夜夜大片| 欧美成人综合| 老司机免费视频一区二区三区| 亚洲狼人精品一区二区三区| 欧美欧美午夜aⅴ在线观看| 欧美日韩精品福利| 亚洲精品美女免费| 亚洲精品九九| 亚洲成色777777在线观看影院| 黄色另类av| 亚洲欧美一区二区激情| 欧美色另类天堂2015| 久久黄金**| 狠狠综合久久av一区二区老牛| 欧美黄色一区| 日韩视频一区二区三区| 日韩性生活视频| 亚洲精品视频中文字幕| 激情综合久久| 一区二区在线看| 午夜欧美电影在线观看| 国产一区二区三区成人欧美日韩在线观看| 亚洲午夜精品网| 国产色视频一区| 亚洲电影免费在线观看| 亚洲国产黄色| 亚洲国产综合视频在线观看| 9l国产精品久久久久麻豆| 亚洲影音先锋| 亚洲欧美日韩一区二区三区在线| 亚洲电影自拍| 99国产精品久久久久久久成人热| 在线看片日韩| 亚洲一区二区在线观看视频| 亚洲一二三区视频在线观看| 国产亚洲精品成人av久久ww| 久久综合九色| 久久综合色婷婷| 免费在线一区二区| 欧美专区亚洲专区| 久久成人人人人精品欧| 亚洲午夜激情网页| 亚洲视频在线观看| 先锋影院在线亚洲| 久久久久在线| 国产欧美日韩免费| 亚洲丰满少妇videoshd| 亚洲欧美精品中文字幕在线| 欧美a级一区二区| 国模叶桐国产精品一区| 亚洲国产国产亚洲一二三| 欧美aa在线视频| 亚洲愉拍自拍另类高清精品| 久久夜色精品亚洲噜噜国产mv| 国产精品成人一区二区网站软件| 韩国久久久久| 中文高清一区| 欧美一级艳片视频免费观看| 国产欧美日韩一级| 在线亚洲自拍| 国产精品日本欧美一区二区三区| 免费h精品视频在线播放| 亚洲欧美影音先锋| 欧美在线播放视频| 性8sex亚洲区入口| 国产日韩亚洲欧美| 亚洲欧美日韩天堂一区二区| 久久精品一二三区| 麻豆精品视频在线观看视频| 国产精品嫩草99a| 欧美日韩国产免费观看| 亚洲精品午夜精品| 亚洲国产成人精品久久| 亚洲国产成人午夜在线一区| 99热这里只有精品8| 亚洲福利专区| 亚洲伊人网站| 国产一区二区日韩精品欧美精品| 欧美视频在线一区二区三区| 国产亚洲一区二区三区在线观看| 亚洲福利视频网| 欧美11—12娇小xxxx| 夜夜嗨av色综合久久久综合网| 欧美精品日韩| 午夜精品在线看| 欧美成人在线免费观看| 欧美视频一区二| 激情视频亚洲| 欧美日韩一区在线视频| 99re国产精品| 国产一区欧美日韩| 欧美怡红院视频| 91久久国产自产拍夜夜嗨| 小嫩嫩精品导航| 亚洲精品一区久久久久久| 亚洲欧美日韩国产一区二区三区| 国产精品日韩专区| 亚洲国产精品专区久久| 国产日韩成人精品| 亚洲美女色禁图| 欧美日韩国产在线一区| 欧美日韩亚洲网| 亚洲美女在线国产| 欧美激情一区二区三区高清视频| 欧美一区二区三区视频在线| 欧美中文字幕精品| 韩曰欧美视频免费观看| 91久久精品一区| 欧美va亚洲va日韩∨a综合色| 久久精品国产免费看久久精品| 国产精品视频你懂的| 欧美日韩情趣电影| 久久精品亚洲精品国产欧美kt∨| 欧美成人精精品一区二区频| 欧美视频免费在线| 欧美99久久| 亚洲男人第一av网站| 欧美国产激情二区三区| 久久久亚洲精品一区二区三区| 亚洲精品国产精品国产自| 蜜桃久久av一区| 在线中文字幕不卡| 一区二区三区福利| 久久在线91| 欧美三级乱码| 国产在线播放一区二区三区| 国产精品资源在线观看| 极品尤物一区二区三区| 欧美视频二区| 欧美~级网站不卡| 欧美区一区二区三区| 在线观看欧美日韩国产| 一区二区免费在线播放| 欧美日韩一区二区视频在线| 欧美成人小视频| 狠狠久久亚洲欧美专区| 夜夜嗨av一区二区三区| 亚洲精选成人| 欧美无乱码久久久免费午夜一区| 国产亚洲午夜| 欧美+日本+国产+在线a∨观看| 欧美成人综合| 亚洲欧洲在线播放| 香蕉乱码成人久久天堂爱免费| 午夜在线a亚洲v天堂网2018|