日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫Neural Networks for Image 編程
代寫Neural Networks for Image 編程

時間:2024-11-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Lab 2: Neural Networks for Image 
Classification
Duration: 2 hours
Tools:
• Jupyter Notebook
• IDE: PyCharm==2024.2.3 (or any IDE of your choice)
• Python: 3.12
• Libraries:
o PyTorch==2.4.0
o TorchVision==0.19.0
o Matplotlib==3.9.2
Learning Objectives:
• Understand the basic architecture of a neural network.
• Load and explore the CIFAR-10 dataset.
• Implement and train a neural network, individualized by your QMUL ID.
• Verify machine learning concepts such as accuracy, loss, and evaluation metrics 
by running predefined code.
Lab Outline:
In this lab, you will implement a simple neural network model to classify images from 
the CIFAR-10 dataset. The task will be individualized based on your QMUL ID to ensure 
unique configurations for each student.
1. Task 1: Understanding the CIFAR-10 Dataset
• The CIFAR-10 dataset consists of 60,000 **x** color images categorized into 10 
classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
• The dataset is divided into 50,000 training images and 10,000 testing images.
• You will load the CIFAR-10 dataset using PyTorch’s built-in torchvision library.
Step-by-step Instructions:
1. Open the provided Jupyter Notebook.
2. Load and explore the CIFAR-10 dataset using the following code:
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# Basic transformations for the CIFAR-10 dataset
transform = transforms.Compose([transforms.ToTensor(), 
transforms.Normalize((0.5,), (0.5,))])
# Load the CIFAR-10 dataset
dataset = datasets.CIFAR10(root='./data', train=True, 
download=True, transform=transform)
2. Task 2: Individualized Neural Network Implementation, Training, and Test
You will implement a neural network model to classify images from the CIFAR-10 
dataset. However, certain parts of the task will be individualized based on your QMUL 
ID. Follow the instructions carefully to ensure your model’s configuration is unique.
Step 1: Dataset Split Based on Your QMUL ID
You will use the last digit of your QMUL ID to define the training-validation split:
• If your ID ends in 0-4: use a 70-30 split (70% training, 30% validation).
• If your ID ends in 5-9: use an 80-20 split (80% training, 20% validation).
Code:
from torch.utils.data import random_split
# Set the student's last digit of the ID (replace with 
your own last digit)
last_digit_of_id = 7 # Example: Replace this with the 
last digit of your QMUL ID
# Define the split ratio based on QMUL ID
split_ratio = 0.7 if last_digit_of_id <= 4 else 0.8
# Split the dataset
train_size = int(split_ratio * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, 
[train_size, val_size])
# DataLoaders
from torch.utils.data import DataLoader
batch_size = ** + last_digit_of_id # Batch size is ** + 
last digit of your QMUL ID
train_loader = DataLoader(train_dataset, 
batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, 
batch_size=batch_size, shuffle=False)
print(f"Training on {train_size} images, Validating on 
{val_size} images.")
Step 2: Predefined Neural Network Model
You will use a predefined neural network architecture provided in the lab. The model’s 
hyperparameters will be customized based on your QMUL ID.
1. Learning Rate: Set the learning rate to 0.001 + (last digit of your QMUL ID * 
0.0001).
2. Number of Epochs: Train your model for 10 + (last digit of your QMUL ID) 
epochs.
Code:
import torch
import torch.optim as optim
# Define the model
model = torch.nn.Sequential(
 torch.nn.Flatten(),
 torch.nn.Linear(******3, 512),
 torch.nn.ReLU(),
 torch.nn.Linear(512, 10) # 10 output classes for 
CIFAR-10
)
# Loss function and optimizer
criterion = torch.nn.CrossEntropyLoss()
# Learning rate based on QMUL ID
learning_rate = 0.001 + (last_digit_of_id * 0.0001)
optimizer = optim.Adam(model.parameters(), 
lr=learning_rate)
# Number of epochs based on QMUL ID
num_epochs = 100 + last_digit_of_id
print(f"Training for {num_epochs} epochs with learning 
rate {learning_rate}.")
Step 3: Model Training and Evaluation
Use the provided training loop to train your model and evaluate it on the validation set. 
Track the loss and accuracy during the training process.
Expected Output: For training with around 100 epochs, it may take 0.5~1 hour to finish. 
You may see a lower accuracy, especially for the validation accuracy, due to the lower 
number of epochs or the used simple neural network model, etc. If you are interested, 
you can find more advanced open-sourced codes to test and improve the performance. 
In this case, it may require a long training time on the CPU-based device.
Code:
# Training loop
train_losses = [] 
train_accuracies = []
val_accuracies = []
for epoch in range(num_epochs):
 model.train()
 running_loss = 0.0
 correct = 0
 total = 0
 for inputs, labels in train_loader:
 optimizer.zero_grad()
 outputs = model(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 
 running_loss += loss.item()
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 train_accuracy = 100 * correct / total
 print(f"Epoch {epoch+1}/{num_epochs}, Loss: 
{running_loss:.4f}, Training Accuracy: 
{train_accuracy:.2f}%")
 
 # Validation step
 model.eval()
 correct = 0
 total = 0
 with torch.no_grad():
 for inputs, labels in val_loader:
 outputs = model(inputs)
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 
 val_accuracy = 100 * correct / total
 print(f"Validation Accuracy after Epoch {epoch + 1}: 
{val_accuracy:.2f}%")
 train_losses.append(running_loss) 
 train_accuracies.append(train_accuracy)
 val_accuracies.append(val_accuracy)
Task 3: Visualizing and Analyzing the Results
Visualize the results of the training and validation process. Generate the following plots 
using Matplotlib:
• Training Loss vs. Epochs.
• Training and Validation Accuracy vs. Epochs.
Code for Visualization:
import matplotlib.pyplot as plt
# Plot Loss
plt.figure()
plt.plot(range(1, num_epochs + 1), train_losses, 
label="Training Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Training Loss")
plt.legend()
plt.show()
# Plot Accuracy
plt.figure()
plt.plot(range(1, num_epochs + 1), train_accuracies, 
label="Training Accuracy")
plt.plot(range(1, num_epochs + 1), val_accuracies, 
label="Validation Accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.title("Training and Validation Accuracy")
plt.legend()
plt.show()
Lab Report Submission and Marking Criteria
After completing the lab, you need to submit a report that includes:
1. Individualized Setup (20/100):
o Clearly state the unique configurations used based on your QMUL ID, 
including dataset split, number of epochs, learning rate, and batch size.
2. Neural Network Architecture and Training (30/100):
o Provide an explanation of the model architecture (i.e., the number of input 
layer, hidden layer, and output layer, activation function) and training 
procedure (i.e., the used optimizer).
o Include the plots of training loss, training and validation accuracy.
3. Results Analysis (30/100):
o Provide analysis of the training and validation performance.
o Reflect on whether the model is overfitting or underfitting based on the 
provided results.
4. Concept Verification (20/100):
o Answer the provided questions below regarding machine learning 
concepts.
(1) What is overfitting issue? List TWO methods for addressing the overfitting 
issue.
(2) What is the role of loss function? List TWO representative loss functions.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:CPSC 471代寫、代做Python語言程序
  • 下一篇:代做INT2067、Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产精品久久9| 久久蜜桃精品| 国产精品视频免费一区| 亚洲一级影院| 国产日韩欧美麻豆| 另类天堂av| 欧美系列一区| 亚洲午夜av在线| 欧美日韩p片| 中文一区字幕| 亚洲视屏在线播放| 欧美国产一区在线| 最新国产精品拍自在线播放| 欧美一区二区在线| 国产亚洲激情| 欧美性猛片xxxx免费看久爱| 欧美成在线观看| 久久www成人_看片免费不卡| 亚洲欧美日韩中文在线制服| 最新成人av网站| 亚洲一区二区三| 欧美精品国产精品日韩精品| 亚洲一区二区黄| 久久av在线| 亚洲午夜激情| 亚洲视频高清| 午夜精品视频在线| 欧美日韩亚洲视频一区| 91久久精品一区| 国产自产女人91一区在线观看| 亚洲影院一区| 国产欧美日韩精品专区| 亚洲国产高清在线观看视频| 国产亚洲精品bt天堂精选| 亚洲精品国产精品国自产观看浪潮| 亚洲欧美一区二区激情| 国产欧美精品在线播放| 久久久久国色av免费观看性色| 亚洲人成毛片在线播放女女| 麻豆av一区二区三区| 99精品视频网| 国产日韩欧美在线播放不卡| 亚洲国产精品精华液2区45| 欧美色道久久88综合亚洲精品| 亚洲影视在线播放| 99ri日韩精品视频| 亚洲欧洲精品一区二区三区| 一本色道久久综合狠狠躁篇怎么玩| 国产精品一区二区久久久久| 影音国产精品| 欧美日一区二区在线观看| 欧美国产大片| 欧美日韩一二三四五区| 国产一区二区三区奇米久涩| 免费不卡在线观看av| 另类图片国产| 欧美影院成人| 欧美超级免费视 在线| 一片黄亚洲嫩模| 欧美日韩精品伦理作品在线免费观看| 女主播福利一区| 国产在线拍偷自揄拍精品| 国产精品激情偷乱一区二区∴| 中文亚洲免费| 国产精品一卡| 国产亚洲一区二区三区在线观看| 亚洲欧美综合一区| 亚洲激情成人网| 午夜精品www| 亚洲人体1000| 国产噜噜噜噜噜久久久久久久久| 影视先锋久久| 国产精品欧美激情| 亚洲欧美激情视频在线观看一区二区三区| 欧美乱在线观看| 欧美成人高清| 99国产一区| 欧美日本国产一区| 先锋影音网一区二区| 国产精品高清一区二区三区| 久久一综合视频| 欧美日韩卡一卡二| 欧美一区二区三区男人的天堂| 在线综合亚洲| 亚洲精品小视频在线观看| 蜜臀久久久99精品久久久久久| 久久精品91| 亚洲一区二区三区久久| 久久久久看片| 欧美日韩三级视频| 国产精品久久久亚洲一区| 欧美日本在线视频| 欧美成人黑人xx视频免费观看| 91久久精品www人人做人人爽| 国产一区二区三区四区老人| 欧美一二三区在线观看| 久久久精品欧美丰满| 一区二区三区**美女毛片| 国产精品免费看片| 欧美超级免费视 在线| 亚洲欧美偷拍卡通变态| 国产欧美日韩亚洲精品| 伊人伊人伊人久久| 亚洲国产成人tv| 国模精品娜娜一二三区| 葵司免费一区二区三区四区五区| 久久久国产精品一区二区中文| 国产精品久线观看视频| 亚洲国产一区视频| 久久精品在这里| 亚洲国产专区| 国产嫩草一区二区三区在线观看| 欧美在线网站| 在线免费一区三区| 国产精品成人免费| 国产精品福利av| 欧美一区二区三区视频在线观看| 欧美另类人妖| 在线免费一区三区| 国产一区二区三区在线免费观看| 老**午夜毛片一区二区三区| 在线视频精品一| 日韩亚洲视频在线| 久久国产精品久久精品国产| 久久久久久久久久久一区| 亚洲精品影视在线观看| 亚洲尤物在线视频观看| 欧美制服丝袜第一页| 欧美成人免费va影院高清| 久久精品国产清自在天天线| 欧美日韩免费一区二区三区| 亚洲在线黄色| 尤物yw午夜国产精品视频| 国产日韩欧美不卡在线| 国产欧美亚洲精品| 欧美在线亚洲在线| 韩国视频理论视频久久| 欧美va天堂va视频va在线| 蜜桃精品久久久久久久免费影院| 亚洲午夜伦理| 欧美午夜精品久久久久久人妖| 尤物在线观看一区| 欧美影片第一页| 午夜免费电影一区在线观看| 精品成人久久| 亚洲国产一区二区三区高清| 国产精品色午夜在线观看| 欧美日韩国产一中文字不卡| 欧美视频一区二区三区| 亚洲图片欧美一区| 一本色道久久综合狠狠躁的推荐| 久久久精品999| 国产一区视频网站| 久久夜色撩人精品| 一区二区在线观看视频| 国产精品国产三级国产aⅴ浪潮| 国产日韩精品一区二区三区| 一本久道久久综合狠狠爱| 一本色道久久综合亚洲精品婷婷| 亚洲欧美日韩中文在线制服| 国产欧美激情| 蜜桃视频一区| 久久久精品免费视频| 久久久精品视频成人|