日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做IMSE7140、代寫Java/c++程序語言
代做IMSE7140、代寫Java/c++程序語言

時間:2024-11-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



IMSE7140 Assignment 2
Cracking CAPTCHAs
(20 points)
2.1 Brief Introduction
CAPTCHA or captcha is the acronym for “Completely Automated Public Turing test
to tell Computers and Humans Apart.” You must have been already familiar with it
because of its popularity in preventing bot attacks or spam everywhere. This assign ment, however, will guide you in implementing a deep learning model that can crack a
commercial-level captcha!
You deliverables for this assignment should include
1. A single PDF file answers.pdf with answers to all the questions explicitly marked
by “Q” with a serial number in this document, and
2. A train.py file to fulfill the programming task requirements marked by “PT.”
Of course, GPUs can facilitate your experiments—Don’t worry if you don’t have any,
the training requirement is deliberately simplified.
2.2 Training your model
The captchas we will crack is the multicolorcaptcha. Please pip install the exact version
1.2.0 (the current latest one) in case there might be any incompatibility for other releases.
We use the following codes to generate captchas.
1 from multicolorcaptcha import CaptchaGenerator
2
3 generator = CaptchaGenerator (0)
4 captcha = generator . gen_captcha_image ( difficult_level =0)
5 image = captcha . image
6 characters = captcha . characters
7 image . save ( f"{ characters }. png", "PNG")
In this snippet, CaptchaGenerator(0) configures the image size to 256 × 144 pixels,
and the difficult level is set to 0 so that the captchas only contains four 0–9 digits.
Please run the code snippet on your computer. If the captcha is successfully generated,
it should look like Figure 2.1.
1
2.2. Training your model S. Qin
Figure 2.1: Sample captcha with digits 0570
The training and the validation datasets are generated and attached in folders
capts train and capts val. For any machine learning problem, before you start to
devise a solution, it is always a good idea to observe the data and gain some intuition
first. You may immediately recognize some difficulties in this task:
• The digits have a set of random fonts and colors;
• Some certain range of random rotations are applied to the digits;
• Some line segments are randomly added to the image.
Such a task is considered impossible for traditional pattern recognition methods,
which may tackle the problem in a process like this: image thresholding, segmenta tion, handcrafted filter design, and pattern matching. We can conjecture that “filter
design” may fail in capturing useful features and “pattern matching” may have a poor
performance.
Fortunately, in the deep learning era, we can delegate the pattern or feature extrac tion job to deep neural networks. As introduced in the previous lecture “Deep Learning
for Computer Vision,” the slide “Understand feature maps: CAPTCHA recognition”
shows that a typical architecture for the task consists of two parts:
1. A backbone model to extract a feature map from the captcha image, and
2. A certain amount of prediction heads to interpret the feature map to readable
forms.
We will follow this architecture in this assignment. I encourage you to search open source solutions and learn from their experience. Here we follow this Kaggle post by
Ashadullah Shawon.
PT| Use capts train as the training dataset, capts val as the validation dataset, and Keras
as the deep learning framework, referring to Shawon’s solution, provide the training code
train.py that fulfills the following requirements. “Copy and paste” the codes from the
original post is allowed, as well as other AI-generated codes.
2
2.3. Example: A practical model S. Qin
1. The maximal number for epochs should be 10. Considering some students
will train the model by CPU, it is fair to limit the number of epochs, so the training
time for the model should be less than half an hour.
2. The accuracy for one digit should be no less than 30% after training for
10 epochs. The training outputs contain four accuracies respective to the four
digits. Since they are similar, you will only need to examine one of them. Keep in
mind that 30% for one digit indicates that the overall accuracy for the recognition
is only 0.3
4 = 0.81%. Such a low accuracy is not useful for cracking the captcha.
However, on the one hand, you may need a GPU to experiment on a practical
solution; on the other hand, a wild guess for a 0–9 digit has an accuracy of 10%,
so if your model’s accuracy can reach 30% after 10 epochs, it already indicates
the model learns from the training set. Hint: if the accuracy for one digit keeps
wandering around 0.1 but not increasing in the first two or three epochs, it is the
signal that you should modify somewhere in your code and try again.
3. The trained model should be saved as a file my model.keras after training.
Though, this model file my model.keras doesn’t need to be uploaded.
Q1| Can we convert the captcha images to grayscale at the preprocessing stage before train ing? What is the possible advantage by doing that? If any, can you point out the
possible disadvantage?
Q2| After the 10-epoch training, what are your accuracies of one digit, for the training and
the validation datasets respectively?
Q3| Is the accuracy for the validation dataset lower than that for the training dataset? What
are the possible reasons?
Q4| How can we improve the model’s performance on the validation dataset? List at least
three different measures.
2.3 Example: A practical model
To demonstrate that the backbone–heads architecture can actually solve the real-world
captcha, I trained a relatively large model by an Nvidia GeForce RTX 30** GPU.
You may find in attached the model file 099**0.9956.keras and the inference code
inference.py. The accuracies versus training epochs are shown in Figure 2.2. The
inference code reads a randomly generated captcha, inferences the model, and compares
the predicted results with the targets. You can press “n” for the next captcha or “q” to
quit the program. You may need to pip install keras cv to run the code.
Q5| What kind of backbone did I use in the model 099**0.9956.keras?
Q6| The backbone’s pre-trained weights on the ImageNet 2012 dataset were loaded before
training. What is the possible advantage by doing that?
Q7| Why didn’t I use any dropout in the model? Guess the reason.
Q8| In Figure 2.2, you may have noticed that the accuracies rise very fast from 0 to 0.9, but
significantly slow from 0.95 to 0.99. Explain the phenomenon.
Q9| Using the same hardware (which means you can’t upgrade the GPU, for example), how
can we speed up the learning process of the model, i.e. the rate of convergence?
3
2.3. Example: A practical model S. Qin
0 200 40**00 800 1000
Epoch
0.2
0.4
0.6
0.8
1.0
Model Accuracies
digi0
digi1
digi2
digi3
Figure 2.2: Accuracies through 1000 epochs in training
Q10| Since the accuracy for one digit is about 99%, the overall accuracy for a captcha is
0.994 ≈ 96%. This performance would be better than humans. Can you propose some
methods that can even further improve the performance?
Please note that, not all the questions above have a definite answer. You may also
need to do some research as the course doesn’t cover all the details in class. The source
code for training this model and the reference answers will be available on Moodle or
sent by email after all the students completing the submission.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:IS3240代做、代寫c/c++,Java程序語言
  • 下一篇:DATA 2100代寫、代做Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久成人一区二区| 欧美日韩免费在线视频| 国产精品腿扒开做爽爽爽挤奶网站| 欧美亚洲视频一区二区| 欧美日韩中文字幕日韩欧美| 国产精品swag| 在线亚洲电影| 亚洲美女av在线播放| 国产精品亚洲视频| 亚洲片国产一区一级在线观看| 欧美日韩一级片在线观看| 亚洲欧美国产一区二区三区| 欧美劲爆第一页| 在线观看日韩av电影| 亚洲国产aⅴ天堂久久| 亚洲国产精品第一区二区| 亚洲在线观看视频| aaa亚洲精品一二三区| 亚洲麻豆国产自偷在线| 怡红院精品视频| 国产精品一区二区久久| 亚洲欧美精品伊人久久| 国产精品日韩高清| 欧美一区二区三区成人| 韩日成人在线| 亚洲免费成人av| 在线观看一区欧美| 欧美一区二区三区四区在线观看| 99re在线精品| 国产精品免费看久久久香蕉| 欧美日韩欧美一区二区| 国产日韩欧美一区二区三区在线观看| 欧美日韩免费在线视频| 欧美电影在线免费观看网站| 伊人成人网在线看| 美女精品一区| 亚洲综合色噜噜狠狠| 久久香蕉国产线看观看网| 国产日韩欧美在线一区| 国产一区二区三区直播精品电影| 欧美区在线观看| 午夜精品久久久| 国产精品日韩欧美综合| 亚洲国产精品热久久| 亚洲中字在线| 99综合电影在线视频| 一区二区三区回区在观看免费视频| 久久激情中文| 麻豆精品精华液| 国产精品二区二区三区| 欧美精品 国产精品| 欧美日韩视频在线| 亚洲级视频在线观看免费1级| 久久久久久黄| 久久综合五月天婷婷伊人| 欧美韩国日本一区| 欧美日韩视频在线一区二区| 女同性一区二区三区人了人一| 国产精品一区二区在线观看网站| 欧美成人a∨高清免费观看| 国产精品久久久久久久一区探花| 国产欧美一区二区三区在线老狼| 国产女精品视频网站免费| 亚洲欧美日韩另类精品一区二区三区| 亚洲精品欧美精品| 久久免费国产精品1| 禁断一区二区三区在线| 欧美在线91| 久久久噜噜噜久久人人看| 亚洲一区二区av电影| 亚洲精品国产精品国产自| 国产麻豆日韩欧美久久| 国产欧美欧洲在线观看| 欧美激情亚洲精品| 亚洲第一综合天堂另类专| 久久九九精品| 一本大道久久a久久精品综合| 欧美va亚洲va香蕉在线| 欧美日韩国产电影| 亚洲欧美日韩一区二区三区在线| 99www免费人成精品| 午夜精品久久久久久久| 亚洲免费在线播放| 亚洲欧美日韩在线| 黄网站免费久久| 99re热这里只有精品免费视频| 欧美一区二粉嫩精品国产一线天| 欧美成年人网| 精品成人国产在线观看男人呻吟| 国产精品第三页| 欧美日韩亚洲一区二区三区| 欧美激情 亚洲a∨综合| 亚洲精品日韩久久| 欧美激情一区| 欧美日韩三级电影在线| 精品88久久久久88久久久| 亚洲在线视频| 99riav国产精品| 一区二区在线观看视频在线观看| 免费久久精品视频| 亚洲欧美另类在线| 久久久精品性| 美女国内精品自产拍在线播放| 噜噜噜噜噜久久久久久91| 欧美一区二区三区电影在线观看| 欧美激情第8页| 亚洲欧美日韩网| 欧美成人精品一区| 怡红院av一区二区三区| 欧美一区二区在线视频| 亚洲国产成人av好男人在线观看| 亚洲精品一区久久久久久| 亚洲国产精品电影| 国产精品久99| 麻豆精品传媒视频| 国内自拍视频一区二区三区| 亚洲伦理在线| 日韩一区二区免费高清| 国产精品国产三级国产aⅴ无密码| 国产精品网站在线播放| 久久久国产精品一区| 欧美一区二区三区四区在线观看| 午夜亚洲福利| 日韩一区二区电影网| 国产精品午夜电影| 欧美激情国产日韩精品一区18| 亚洲国产福利在线| 欧美精品在线视频观看| 亚洲欧美日韩天堂| 国产精品yjizz| 欧美a级一区| 在线看国产日韩| 欧美在线免费视屏| 欧美国产视频一区二区| 亚洲人成艺术| 久久手机精品视频| 亚洲国产美国国产综合一区二区| 久久久人成影片一区二区三区观看| 在线看片欧美| 亚洲精品资源美女情侣酒店| 欧美激情免费在线| 久热爱精品视频线路一| 国产精品一区二区在线| 欧美综合国产精品久久丁香| 国产精品九九| 亚洲成人在线| 亚洲精品在线观| 亚洲欧洲精品一区二区精品久久久| 在线亚洲欧美专区二区| 亚洲国产成人tv| 悠悠资源网久久精品| 欧美紧缚bdsm在线视频| 亚洲欧美日韩国产综合在线| 欧美视频在线观看一区二区| 国产精品免费aⅴ片在线观看| 亚洲人成毛片在线播放女女| 午夜欧美不卡精品aaaaa| 91久久国产综合久久91精品网站| 国产一区日韩欧美| 国外成人在线| 欧美一区二区在线免费观看| 中国日韩欧美久久久久久久久| 久久尤物电影视频在线观看| 久久精品视频在线播放|