日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CENG 2310、代寫matlab設計編程
代做CENG 2310、代寫matlab設計編程

時間:2024-10-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



BIEN/CENG 2310
MODELING FOR CHEMICAL AND BIOLOGICAL ENGINEERING
HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, FALL 2024
HOMEWORK #3 (DUE OCT. 28, 2024)
1. In this problem, we will simulate the motion of a planet orbiting the sun:
As shown, we place the sun is located at the origin, and the aphelion (the point at which the planet is farthest away from the sun) is located on the positive w**9;-axis. At time w**5;, the planet is
located at the coordinate (w**9;, 𝑦) and its distance from the sun is w**3; = √w**9;2 + 𝑦2. We can model the motion of the planet as a set of two second-order ODEs:
𝑑2w**9; = −𝐺𝑀 ( w**9; ) 𝑑w**5;2 w**3;3
𝑑2𝑦 = −𝐺𝑀 ( 𝑦 ) 𝑑w**5;2 w**3;3
where 𝐺 is the gravitational constant, 𝑀 is the mass of the sun, and the combination 𝐺𝑀 is equal to 2.94 × 10−4 AU3d−2. (For this problem, we will use the time unit of days (d), and the length unit of astronomical units (AU), which is defined as the average distance from the Earth to the sun, about 149.6 × 106 km. ) We will choose the initial location of the planet to be the aphelion, namely, w**9;(w**5; = 0) = 𝑅0, 𝑦(w**5; = 0) = 0. We also know that, since the orbit is an
ellipse, at the aphelion 𝑑w**9;| = 0. The speed of the planet at the aphelion is 𝑑𝑦| = w**7;0. 𝑑w**5; w**5;=0 𝑑w**5; w**5;=0
  
(a) Write a MATLAB program to solve the set of two second-order ODEs as an initial value problem. Allow the user to specify 𝑅0, the distance of the planet from the sun at the aphelion, and w**7;0, the speed of the planet at the aphelion.
The program should stop when the planet returns to the aphelion, and output the period 𝜏, the time it takes to complete one cycle. Your function definition should be:
                   function tau = solarIVP(R0, v0, showplot)
If showplot is set to true, provide a plot that shows the planet (a blue circle) moving around the sun (a red circle) as a movie. The speed at which the planet moves in the movie should be proportional to the speed it actually moves in orbit around the sun.
(b) Suppose we have a planet for which we can measure its distance from the sun at the aphelion, 𝑅0, and the period 𝜏 of its orbit. Solve the boundary value problem to determine its speed at its aphelion w**7;0, using the shooting method. Your function definition should be:
                        function v0 = solarBVP(R0, tau)
There is no need to produce any plot or movie for this part.
Hint: A good initial guess of w**7;0 is √𝐺𝑀/𝑅0. You may call your function from Part (a). Some data to test your program (do NOT expect exact match):
     Planet
Mercury Earth Mars
𝑹𝟎 /𝐀𝐔
0.46670 1.016** 1.6662
𝝉/𝐝
87.969 365.25 687.98
𝒗𝟎 /(𝐀𝐔/𝐝)
0.02269 0.01692 0.01271
                 DELIVERABLES:
Submit your programs solarIVP.m and solarBVP.m. No need to provide any write-up or plot for this question.

2. To help cool down computer chips, heat sinks like the one shown below are often employed to carry away the heat generated more efficiently:
Consider one of the metal pins, represented in the following schematic diagram:
   Convection
where the temperature 𝑇(w**5;, w**9;) is a function of both time and location (measured axially from the root of the pin), 𝛼 is the thermal diffusivity that measures heat conduction in the metal, ҵ**; is a parameter that measures heat convection from the metal pin to the surrounding air, and 𝑇 is the temperature of the air around the pin.
(a) Suppose we are only interested in the steady-state temperature profile of the pin, i.e., when the computer chip has been running continuously for a while, and ejects a constant flux of heat to the pin. The PDE can then be simplified to a second-order ODE for 𝑇(w**9;):
        Hot computer chip at constant
Air at constant temperature 𝑇 𝑎
Metal pin
 𝑎
temperature 𝑇 𝑐
0
Conduction
 𝐿 w**9;
Its temperature profile can be described by the following partial differential equation (PDE):
with the boundary conditions:
𝜕𝑇 = 𝛼 (𝜕2𝑇) − ҵ**;(𝑇 − 𝑇 )
𝜕w**5; 𝜕w**9;2
𝑎
0=𝛼(𝑑2𝑇)−ҵ**;(𝑇−𝑇 )
𝑇(w**9; = 0) = 𝑇 𝑐
𝑑𝑇| =0 𝑑w**9; w**9;=𝐿
𝑑w**9;2
𝑎
where 𝑇 is the computer chip’s temperature, and 𝐿 is the length of the pin. (Here we are 𝑐
assuming that the “tip” of the metal pin is small compared to its length, so that the heat loss at the tip (in the +w**9; direction) would be negligible.)
>
> > >

Solve this boundary value problem by the finite difference method, dividing the pin’s length into 𝑛 equal pieces. Your function definition should be:
function dTdx0 = heatSinkSteady(alpha, beta, Ta, Tc, L, n)
The program should plot the steady-state temperature profile 𝑇 vs. w**9;, and return the value of 𝑑𝑇| . (This value is proportional to the maximum heat rate that can be carried
𝑑w**9; w**9;=0
away by the heat sink while keeping the chip temperature constant.)
(b) Your model is helpful for designing a heat sink. Given that 𝛼 = 0.001 cm2/s, ҵ**; = 0.03 s−1,
𝑇 =300K,𝑇 =340K,whatvalueof𝐿(thelengthofthepin)wouldyouchoose?Explain 𝑎𝑐
your answer.
(c) Solve the PDE for the transient behavior of the heat sink (i.e. without assuming steady
state) using the method of lines. The initial temperature of the whole metal pin is 𝑇 . For 𝑎
the boundary conditions, this time, instead of fixing the computer chip temperature at 𝑇 , 𝑐
we will assume that the heat flux ejected from the computer chip is constant at the steady state value, i.e. the value of 𝑑𝑇| you get from running the program in Part (a). Stop the
𝑑w**9; w**9;=0
program when it reaches steady state, and make two plots, a 3-D plot of 𝑇 vs. w**9; vs. w**5;, and
a “contour plot” of temperature profiles at 10 different time points overlaid on the same plot. Your function definition should be:
function [] = heatSinkTransient(alpha, beta, Ta, Tc, L, n)
 DELIVERABLES:
Submit your programs heatSinkSteady.m for Part (a) and heatSinkTransient.m for Part (c). For both, we will set up the discretization schemes and the boundary conditions in class, to help you get started.
Also submit the write-up for Part (b), which should come with a plot to justify your answer.

3. In this problem we will model the so-called “diffusion disc assay” for measuring the effectiveness of an antibiotic to stop bacterial growth. A small disc with antibiotic is placed in the center of the agar plate with bacterial culture, and over time, the antibiotic will diffuse outwards. If the antibiotic is effective, it will stop the bacteria from growing near the disc, resulting in an inhibition zone. An antibiotic’s effectiveness is defined by the concentration required to inhibit bacterial growth, called the minimum inhibitory concentration (MIC); the lower the MIC, the more effective the antibiotic is. In this assay, the size of the inhibition zone measured at a given time after applying the disc is used to calculate the MIC.
 As shown, the agar plate is circular, and we place the origin at its center. The radius of the plate is 𝑅, and the radius of the antibiotic disc is 𝜀. At time w**5; = 0, we place the antibiotic disc, and the concentration of the antibiotic at w**3; ≤ 𝜀 is assumed to be constant at 𝐶𝑑𝑖w**4;𝑐 at all times. As the antibiotic diffuses outwards, the concentration of the antibiotic, 𝐶(w**5;, w**3;), as a function of time w**5; and radial distance from the center, w**3;, can be modeled by a PDE. At time w**5; = w**5;𝑓, we measure the radius of the inhibition zone, 𝑅𝑧w**0;𝑛Ү**;. The MIC is equal to 𝐶(w**5; = w**5;𝑓,w**3; = 𝑅𝑧w**0;𝑛Ү**;).
(a) By writing a balance equation for the antibiotic for the ring-shaped control volume on the next page, taking the limit of ∆w**3; → 0, and applying Fick’s Law, show that the diffusion can be described by the following PDE:
𝜕𝐶 𝐷(𝜕2𝐶+1𝜕𝐶) 𝜕w**5; = { 𝜕w**3;2 w**3; 𝜕w**3;
0
where 𝐶(w**5;, w**3;) is the concentration of the antibiotic at time w**5; and radial distance w**3; from the
center, 𝐷 is the diffusivity of the antibiotic in agar.
State any assumption(s). Also, write down suitable initial conditions and boundary conditions. Note that for boundary conditions, it makes sense to impose “no flux” boundary conditions at w**3; = 𝑅 (the edge of the plate) and at w**3; = 0 (center of the plate).
  𝑓w**0;w**3; w**3;>𝜀 𝑓w**0;w**3; w**3; ≤ 𝜀
   Hint:
lim (w**9;+∆w**9;)𝑓(w**9;+∆w**9;)−w**9;𝑓(w**9;)= 𝑑 (w**9;𝑓) ∆w**9;→0 ∆w**9; 𝑑w**9;
 
(b) To solve this PDE by the “Method of Lines” in MATLAB, we will divide the space domain 0 ≤ w**3; ≤ 𝑅 equally into 𝑛 pieces of width h, and call the concentrations at the boundary of adjacent pieces 𝐶1(w**5;), 𝐶2(w**5;), 𝐶3(w**5;), ... , 𝐶𝑛(w**5;), as shown below:
Important note: We will not simulate the point at exactly w**3; = 0, since it will result in a division by zero. Instead, we can assume that the concentration there is equal to 𝐶1(w**5;), in line with our “no flux” boundary condition. For our purpose, it will not matter, since that point will have constant concentration at 𝐶𝑑𝑖w**4;𝑐 anyway.
Let 𝐶Ү**; (w**5;) be the rightmost node within the disc, i.e., Ү**;h ≤ 𝜀 . Write down the ODEs for 𝐶1(w**5;), 𝐶2(w**5;), 𝐶3(w**5;), ... , 𝐶𝑛(w**5;), using finite difference approximations for 𝜕2𝐶⁄𝜕w**3;2 and 𝜕𝐶⁄𝜕w**3;.
(c) Complete the provided MATLAB program (antibioticDisc_template.m) to solve this PDE. Theprogramshouldacceptinputparametersof𝐷,𝑅,𝐶𝑑𝑖w**4;𝑐,𝜀,w**5;𝑓,and𝑅𝑧w**0;𝑛Ү**;,plot𝐶(w**5;,w**3;) in a 3D surface plot, and return the MIC, i.e., an estimate as close to 𝐶(w**5; = w**5;𝑓, w**3; = 𝑅𝑧w**0;𝑛Ү**;) as possible. Rename your program antibioticDisc.m and submit on Canvas.
For your testing, the following are some sample plots (with parameters specified in the titles). Note the asterisk marking the point 𝐶(w**5; = w**5;𝑓, w**3; = 𝑅𝑧w**0;𝑛Ү**;).
  
  DELIVERABLES:
Submit your type-written or scanned hand-written write-up for Parts (a) and (b).
Submit your program antibioticDisc.m for Part (c). To save you some trouble in plotting, you should start from the antibioticDisc_template.m provided to you, and only add your code where it is marked “% Add code here”.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:AME 209代做、代寫Matlab 程序設計
  • 下一篇:CAN201代做、python語言程序代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美在现视频| 中国女人久久久| 国内揄拍国内精品久久| 欧美福利视频在线观看| 久久综合影视| 午夜影视日本亚洲欧洲精品| 在线观看亚洲视频| 欧美+日本+国产+在线a∨观看| 亚洲靠逼com| 国产欧美日韩| 国产精品v欧美精品v日韩| 欧美区亚洲区| 在线观看成人av电影| 国产精品扒开腿做爽爽爽软件| 亚洲欧洲精品成人久久奇米网| 在线视频日本亚洲性| 欧美激情综合色| 欧美日韩国产精品一区| 亚洲午夜免费福利视频| 99视频+国产日韩欧美| 亚洲一区二区三区视频| 久久人人97超碰国产公开结果| 亚洲视频大全| 亚洲激情一区二区三区| 午夜在线视频观看日韩17c| 亚洲激情在线播放| 午夜精品美女自拍福到在线| 国产精品分类| 午夜国产精品视频免费体验区| 在线看国产日韩| 欧美韩日精品| 亚洲精品乱码久久久久久蜜桃麻豆| 午夜精品久久99蜜桃的功能介绍| 9色porny自拍视频一区二区| 国产精品看片你懂得| 久久青草福利网站| 黄色精品免费| 国产精品日韩欧美一区| 韩日成人av| 久久久国产精品一区| 久久综合电影一区| 亚洲福利视频一区二区| 国产精品jizz在线观看美国| 欧美色欧美亚洲另类七区| 禁久久精品乱码| 欧美日韩在线一区二区三区| 美女黄网久久| 一区在线电影| 亚洲欧美日韩国产综合在线| 在线欧美福利| 一本色道精品久久一区二区三区| 欧美综合国产精品久久丁香| 欧美日韩国产在线播放网站| 欧美在线不卡| 在线观看亚洲一区| 久久尤物电影视频在线观看| 欧美国产专区| 午夜精品一区二区三区四区| 欧美精品一区二区在线播放| 国产伦精品一区二区三区视频黑人| 欧美激情区在线播放| 国产视频不卡| 亚洲女人天堂成人av在线| 欧美日韩不卡视频| 国产精品欧美一区二区三区奶水| 亚洲国产高清在线观看视频| 亚洲免费视频一区二区| 亚洲欧美另类国产| 国产日韩欧美三区| 一区二区精品在线观看| 欧美日韩不卡在线| 国内一区二区三区在线视频| 亚洲久久一区| 欧美一乱一性一交一视频| 亚洲少妇中出一区| 国产伊人精品| 亚洲精品在线三区| 欧美一区二粉嫩精品国产一线天| 国产精品久久久久婷婷| 亚洲福利在线视频| 一本一道久久综合狠狠老精东影业| 99视频精品在线| 午夜精品久久久久久久久久久久| 亚洲综合电影| 亚洲女女做受ⅹxx高潮| 国产毛片精品国产一区二区三区| 久久久久久国产精品mv| 国产精品一页| 亚洲一区二区三区免费观看| 好吊色欧美一区二区三区视频| 怡红院精品视频| 亚洲免费视频网站| 久久综合中文字幕| 免费精品99久久国产综合精品| 亚洲第一二三四五区| 欧美日韩国产成人高清视频| 国产精品白丝av嫩草影院| 久久免费的精品国产v∧| 亚洲大片在线观看| 欧美激情精品久久久久久免费印度| 亚洲精品欧洲精品| 久久久精品国产免大香伊| 一本久道久久久| 久久久久久久网站| 国内久久精品| 欧美一区二区三区在线视频| 欧美一区二区三区四区在线观看地址| 久久久www成人免费毛片麻豆| 国产精品黄页免费高清在线观看| 亚洲二区视频| 国产欧美1区2区3区| 一本综合久久| 亚洲性感美女99在线| 在线观看一区二区精品视频| 国产嫩草一区二区三区在线观看| 欧美激情黄色片| 欧美刺激午夜性久久久久久久| 国内精品久久久久国产盗摄免费观看完整版| 欧美日韩免费在线| 久久不见久久见免费视频1| 激情91久久| 亚洲经典在线看| 亚洲综合色视频| 欧美成人一二三| 韩国一区二区三区美女美女秀| 欧美日韩国产不卡在线看| 最新成人av网站| 国产精品久99| 91久久精品一区二区三区| 国户精品久久久久久久久久久不卡| 在线精品国精品国产尤物884a| 欧美精品www在线观看| 欧美性一二三区| 一区二区日韩欧美| 欧美性猛交xxxx乱大交退制版| 欧美国产乱视频| 亚洲在线国产日韩欧美| 亚洲精品自在久久| 国产精品99久久久久久www| 国产一区二区三区在线观看精品| 欧美在线视频免费播放| 亚洲国产精选| 国产精品成av人在线视午夜片| 亚洲国产一区二区三区高清| 欧美电影在线播放| 欧美激情亚洲一区| 午夜激情久久久| 国产精品成人免费| 亚洲日韩欧美视频一区| 久久亚洲午夜电影| 免费亚洲电影| 欧美在线观看天堂一区二区三区| 欧美日韩国产黄| 激情成人综合| 国产精品久久福利| 免费观看国产成人| 尤物99国产成人精品视频| 亚洲精品一区中文| 中文欧美在线视频| 久久久久一本一区二区青青蜜月| 国产一区二区高清不卡| 国产日韩欧美不卡在线| 裸体丰满少妇做受久久99精品| 欧美精品久久久久久久|