日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

FINM8006代寫、代做Python編程設計
FINM8006代寫、代做Python編程設計

時間:2024-10-13  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



FINM8006 Advanced Investment Assignment
Due 11/10/2024
1 Chinese A-Share Market
Stock market in China is often said to be heavily inffuenced by individual traders.
Size and liquidity therefore are long suspected to play important roles in Chinese
A-share market. Mutual fund industry has been developing in the recent years,
especially after 2016. In this exercise, we will analyze the Chinese market from
2012 to 2022.
1.1 Data Description
The data folder contains two zipped (.gz) csv ffles.
• monthly_returns_cn.csv.gz contains monthly stock and market returns
for stocks on Chinese market from 2010 to 2022.
– stkcd: stock code
– month: date of monthly end date
– ret: stock return
– mktret: market return
– rf: risk free rate
• monthly_characteristics_cn.csv.gz contains ffrm characteristics of
the shares traded each month from the market and earnings announcements.

stkcd: stock code
– priormonth: end of the month date when characteristics information
is known
– market_value: market cap (value) of stock in the month
– ep: EP ratio calculated as earnings divided by market cap
– amihud: average Amihud measure in a month. Amihud measure is a
measure of stock illiquidity, calculated as stock price change divided
by trading volume. The higher the value the lower a stock’s liquidity.
1.2 Your Tasks
11.2.1 Mean Variance
Suppose you inherited an amount of money (M) at the end of year 2020 and want
to invest it in a basket of stocks and risk free asset at the beginning of 2021.
stkcds of the stocks in your basket are ['600519', '002594', '002415',
'000333'] and the risk free rate is known at the beginning of 2021. You have
CRRA utility function of risk aversion    = 3. You estimate the return characteristics
 using data in the last 3 years prior to 2021.
1. What is your optimal share of M to invest in the stock basket?
2. What is the optimal share of M to invest in each stock if you decide to do
mean-variance investing?
3. What are the returns you expected to get and you will actually get (from
M, consider only the stock returns) in January 2021?
4. If you compose your stocks in the basket based on their relative market
caps at the end of 2020, what return (from M, consider only the stock
returns) in January 2021 will you get?
1.2.2 CAPM BETA
For each stock and month starting from January 2012, use the prior 24 month
to estimate CAPM   . You will require a ffrm-month to have at least 12 months
of prior data to estimate, otherwise the ffrm-month will be dropped from the
portfolio. From now on, your data will be ffrms with legitimate beta and other
characteristics information.
For each month starting from 2012, form 10 portfolios according to their CAPM
  , then plot the average realized monthly excess return against the average   
for the 10 portfolios. Add the CAPM line also to your graph. Please comment
on the graph you produce, what kind of the stocks are likely to be overvalued
or undervalued.
1.2.3 Size and EP Ratio
For each month starting from 2012, form 25 (5x5) portfolios by sorting stocks
according to size (proxied by market value) and EP ratio. Stock characteristics
in a month is its characteristics in the prior month. Calculate the value-weighted
returns and betas. Produce a within-size plot and a within-PE plot for the 25
portfolios by plotting mean excess return against CAPM as in the lecture notes.
Comment on your graphs.
1.2.3.1 Size and EP factors
You will divide your stocks into 6 (2X3) portfolios according to size and EP.
Returns in the portfolios are value-weighted. Then you will form your SMB
(size) factor by longing the equally-weighted portfolios of small stock portfolios
2and shorting the equally-weighted portfolios of big stock portfolios, form your
HML (EP) factor by longing the equally-weighted portfolios of high EP stock
portfolios and shorting the equally-weighted portfolios of low EP stock portfolios.
Plot the cumulative factor returns along with the cumulative market excess
return.
Run multi-factor models of market excess return, SMB and HML for each of the
25 portfolios you formed earlier, and get the factor loading. Produce within-size
and with-EP plots by plotting average portfolio excess returns against average
model predicted excess returns. You get model predicted excess returns from
factor loading and mean factor returns. Has the multi-factor loading improved
the model prediction?
1.2.4 Liquidity Premium
Is there liquidity premium and What is its dynamics? Let’s examine. In addition
 to the 2X3 sorting, we also sort independently into 5 portfolios according
to amihud. That is, we sort stockings into 2X3X5 portfolios of size, EP and
liquidity. Again, portfolio returns are value weighted. Finally, we form liquidity
 premium by longing the equally-weighted portfolios of high illiquidity
stock portfolios and shorting the equally-weighted portfolios of low illiquidity
stock portfolios. Calculate the time-series of liquidity premium, and plot the
cumulative returns of the premium. Comment on the graph you get.
1.3 Python Notes
You can use pandas to read zipped csv ffles. Notice that stkcd is a str, and
month is a date, they need to be speciffed in reading to have the correct data
type, such as the following:
monthly_returns = pd.read_csv('monthly_returns_cn.csv.gz',
parse_dates=['month'], dtype={'stkcd':'str'})
You will need statsmodels for regression. For rolling regression, you can use
a for loop as the backtesting workshop, or use RollingOLS in statsmodels.
To calculate things by group, the groupby method of pandas will be useful.
You can use apply following groupby to get results in a new data frame, or use
transform to add the results to the existing dataframe. Please see lecture notes
and pandas documentation online for details.
qcut method of pandas is handy for ffnding the cutoff and sorting dataframe
into groups. The following lambda function, when applied to x, put 10 group
labels, size0…size9 according to x.
lambda x: pd.qcut(x, 10, labels=['size'+str(x) for x in range(10)], retbins=False)
3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp










 

掃一掃在手機打開當前頁
  • 上一篇:代寫SCIE1000、代做Python程序設計
  • 下一篇:CS439編程代寫、代做Java程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲激精日韩激精欧美精品| 国产精品亚洲网站| 久久久国产精品亚洲一区| 亚洲人成在线免费观看| 亚洲午夜性刺激影院| 中日韩午夜理伦电影免费| 国产精品资源在线观看| 国产精品亚洲片夜色在线| 久久精品在线播放| 欧美午夜电影在线| 日韩亚洲视频在线| 久久香蕉国产线看观看av| 这里只有精品丝袜| 巨胸喷奶水www久久久免费动漫| 午夜视频久久久久久| 欧美在线视频观看| 国产一区二区三区无遮挡| 国产亚洲激情在线| 欧美性理论片在线观看片免费| 伊人男人综合视频网| 亚洲国产日韩欧美综合久久| 国产一区二区三区成人欧美日韩在线观看| 狠狠色丁香久久婷婷综合丁香| 久久久久在线| 欧美精品一区二区三区四区| 美女成人午夜| 欧美国产日韩免费| 亚洲视频中文| 麻豆精品视频在线| 亚洲福利视频网| 国产精品99久久不卡二区| 一区二区在线观看视频在线观看| 国产又爽又黄的激情精品视频| 欧美中文在线字幕| 一区二区高清在线| 久久久精品一品道一区| 亚洲欧美日韩综合| 亚洲精品国产无天堂网2021| 国产精品美女视频网站| 欧美日韩精品免费| 国产主播在线一区| 亚洲午夜一区二区三区| 亚洲一区3d动漫同人无遮挡| 亚洲综合日韩在线| 亚洲美女av黄| 亚洲视频视频在线| 亚洲人成在线观看| 亚洲精品欧美精品| 国产日韩精品综合网站| 激情五月综合色婷婷一区二区| 亚洲国产一区在线| 国产精品丝袜白浆摸在线| 欧美日韩国产精品专区| 在线观看欧美日韩国产| 麻豆久久久9性大片| 激情欧美一区二区三区在线观看| 欧美国产专区| 国产精品色婷婷| 欧美另类视频| 在线成人www免费观看视频| 国产欧美 在线欧美| 国产精品久久久久999| 久久精品国产精品亚洲精品| 欧美日韩一区二区在线视频| 亚洲一区二区影院| 亚洲嫩草精品久久| 狠狠色丁香久久婷婷综合丁香| 亚洲一区二区三区四区在线观看| 国产农村妇女精品| 激情婷婷欧美| 久久久久久亚洲精品中文字幕| 亚洲天堂第二页| 久久久最新网址| 欧美视频免费看| 日韩一区二区电影网| 久久夜色精品亚洲噜噜国产mv| 国产视频一区二区三区在线观看| 国产一区二区成人久久免费影院| 韩国福利一区| 亚洲欧洲av一区二区| 欧美丰满少妇xxxbbb| 久久久天天操| 国产精品99久久久久久有的能看| 亚洲毛片av在线| 久久夜精品va视频免费观看| 国产伦精品一区二区三区高清| 欧美 亚欧 日韩视频在线| 亚洲精品日产精品乱码不卡| 国产精品高清在线| 亚洲精品乱码久久久久久久久| 欧美性猛交99久久久久99按摩| 久久天天躁狠狠躁夜夜av| 欧美精品一区三区| 99精品欧美一区| 99国产精品视频免费观看| 国产一区二区久久久| 欧美激情影音先锋| 欧美激情一区二区三区蜜桃视频| 国产欧美日韩综合一区在线播放| 亚洲国产精品久久久久婷婷884| 欧美啪啪成人vr| 亚洲午夜激情在线| 香蕉亚洲视频| 欧美日韩和欧美的一区二区| 久久精品一区蜜桃臀影院| 韩国自拍一区| 一本色道久久88亚洲综合88| 亚洲宅男天堂在线观看无病毒| 免费观看成人鲁鲁鲁鲁鲁视频| 在线播放中文字幕一区| 红桃视频一区| 国产欧美日韩视频| 亚洲激情电影中文字幕| 午夜精品久久久久久久蜜桃app| 亚洲欧美日韩电影| 看欧美日韩国产| 免费不卡欧美自拍视频| 欧美一区二区三区免费在线看| 先锋影音国产一区| 国产午夜精品一区理论片飘花| 欧美日产一区二区三区在线观看| 国产麻豆日韩欧美久久| 欧美日本一区二区视频在线观看| 国产精品一二一区| 国产精品亚洲美女av网站| 久久精品国产清自在天天线| 亚洲欧洲一区二区三区在线观看| 久久精品30| 国产一区二区三区四区在线观看| 国产精品美腿一区在线看| 亚洲第一色在线| 欧美在线不卡视频| 一区二区亚洲精品| 在线观看不卡av| 欧美性做爰猛烈叫床潮| 亚洲精选成人| 国产欧美日韩综合一区在线观看| 中文精品视频一区二区在线观看| 欧美体内谢she精2性欧美| 国产美女在线精品免费观看| 亚洲七七久久综合桃花剧情介绍| 国产精品午夜在线| 欧美专区日韩视频| 久久精品国产91精品亚洲| 亚洲高清视频一区| 亚洲美女在线观看| 欧美www视频在线观看| 夜夜嗨av色综合久久久综合网| 国产精品婷婷午夜在线观看| 国产精品jvid在线观看蜜臀| 国产视频欧美视频| 国产精品无码专区在线观看| 国产欧美日韩视频| 亚洲午夜精品国产| 亚洲电影第三页| 亚洲免费综合| 亚洲国产精品一区二区第一页| 欧美一级在线视频| 欧美一区永久视频免费观看| 在线免费一区三区| 亚洲美女电影在线| 亚洲图色在线| 国产精品资源在线观看| 黑人巨大精品欧美黑白配亚洲|