日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

FINM8006代寫、代做Python編程設計
FINM8006代寫、代做Python編程設計

時間:2024-10-13  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



FINM8006 Advanced Investment Assignment
Due 11/10/2024
1 Chinese A-Share Market
Stock market in China is often said to be heavily inffuenced by individual traders.
Size and liquidity therefore are long suspected to play important roles in Chinese
A-share market. Mutual fund industry has been developing in the recent years,
especially after 2016. In this exercise, we will analyze the Chinese market from
2012 to 2022.
1.1 Data Description
The data folder contains two zipped (.gz) csv ffles.
• monthly_returns_cn.csv.gz contains monthly stock and market returns
for stocks on Chinese market from 2010 to 2022.
– stkcd: stock code
– month: date of monthly end date
– ret: stock return
– mktret: market return
– rf: risk free rate
• monthly_characteristics_cn.csv.gz contains ffrm characteristics of
the shares traded each month from the market and earnings announcements.

stkcd: stock code
– priormonth: end of the month date when characteristics information
is known
– market_value: market cap (value) of stock in the month
– ep: EP ratio calculated as earnings divided by market cap
– amihud: average Amihud measure in a month. Amihud measure is a
measure of stock illiquidity, calculated as stock price change divided
by trading volume. The higher the value the lower a stock’s liquidity.
1.2 Your Tasks
11.2.1 Mean Variance
Suppose you inherited an amount of money (M) at the end of year 2020 and want
to invest it in a basket of stocks and risk free asset at the beginning of 2021.
stkcds of the stocks in your basket are ['600519', '002594', '002415',
'000333'] and the risk free rate is known at the beginning of 2021. You have
CRRA utility function of risk aversion    = 3. You estimate the return characteristics
 using data in the last 3 years prior to 2021.
1. What is your optimal share of M to invest in the stock basket?
2. What is the optimal share of M to invest in each stock if you decide to do
mean-variance investing?
3. What are the returns you expected to get and you will actually get (from
M, consider only the stock returns) in January 2021?
4. If you compose your stocks in the basket based on their relative market
caps at the end of 2020, what return (from M, consider only the stock
returns) in January 2021 will you get?
1.2.2 CAPM BETA
For each stock and month starting from January 2012, use the prior 24 month
to estimate CAPM   . You will require a ffrm-month to have at least 12 months
of prior data to estimate, otherwise the ffrm-month will be dropped from the
portfolio. From now on, your data will be ffrms with legitimate beta and other
characteristics information.
For each month starting from 2012, form 10 portfolios according to their CAPM
  , then plot the average realized monthly excess return against the average   
for the 10 portfolios. Add the CAPM line also to your graph. Please comment
on the graph you produce, what kind of the stocks are likely to be overvalued
or undervalued.
1.2.3 Size and EP Ratio
For each month starting from 2012, form 25 (5x5) portfolios by sorting stocks
according to size (proxied by market value) and EP ratio. Stock characteristics
in a month is its characteristics in the prior month. Calculate the value-weighted
returns and betas. Produce a within-size plot and a within-PE plot for the 25
portfolios by plotting mean excess return against CAPM as in the lecture notes.
Comment on your graphs.
1.2.3.1 Size and EP factors
You will divide your stocks into 6 (2X3) portfolios according to size and EP.
Returns in the portfolios are value-weighted. Then you will form your SMB
(size) factor by longing the equally-weighted portfolios of small stock portfolios
2and shorting the equally-weighted portfolios of big stock portfolios, form your
HML (EP) factor by longing the equally-weighted portfolios of high EP stock
portfolios and shorting the equally-weighted portfolios of low EP stock portfolios.
Plot the cumulative factor returns along with the cumulative market excess
return.
Run multi-factor models of market excess return, SMB and HML for each of the
25 portfolios you formed earlier, and get the factor loading. Produce within-size
and with-EP plots by plotting average portfolio excess returns against average
model predicted excess returns. You get model predicted excess returns from
factor loading and mean factor returns. Has the multi-factor loading improved
the model prediction?
1.2.4 Liquidity Premium
Is there liquidity premium and What is its dynamics? Let’s examine. In addition
 to the 2X3 sorting, we also sort independently into 5 portfolios according
to amihud. That is, we sort stockings into 2X3X5 portfolios of size, EP and
liquidity. Again, portfolio returns are value weighted. Finally, we form liquidity
 premium by longing the equally-weighted portfolios of high illiquidity
stock portfolios and shorting the equally-weighted portfolios of low illiquidity
stock portfolios. Calculate the time-series of liquidity premium, and plot the
cumulative returns of the premium. Comment on the graph you get.
1.3 Python Notes
You can use pandas to read zipped csv ffles. Notice that stkcd is a str, and
month is a date, they need to be speciffed in reading to have the correct data
type, such as the following:
monthly_returns = pd.read_csv('monthly_returns_cn.csv.gz',
parse_dates=['month'], dtype={'stkcd':'str'})
You will need statsmodels for regression. For rolling regression, you can use
a for loop as the backtesting workshop, or use RollingOLS in statsmodels.
To calculate things by group, the groupby method of pandas will be useful.
You can use apply following groupby to get results in a new data frame, or use
transform to add the results to the existing dataframe. Please see lecture notes
and pandas documentation online for details.
qcut method of pandas is handy for ffnding the cutoff and sorting dataframe
into groups. The following lambda function, when applied to x, put 10 group
labels, size0…size9 according to x.
lambda x: pd.qcut(x, 10, labels=['size'+str(x) for x in range(10)], retbins=False)
3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp










 

掃一掃在手機打開當前頁
  • 上一篇:代寫SCIE1000、代做Python程序設計
  • 下一篇:CS439編程代寫、代做Java程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        麻豆91精品| 国产精品久久久久一区二区三区共| 亚洲午夜久久久久久久久电影院| 99国产一区二区三精品乱码| 欧美肥婆在线| 欧美片网站免费| 欧美专区日韩专区| 欧美日韩一区二区三区四区在线观看| 美女诱惑黄网站一区| 国产专区欧美专区| 亚洲综合视频在线| 国产综合久久| 亚洲毛片网站| 亚洲男人的天堂在线aⅴ视频| 欧美成人网在线| 亚洲激情偷拍| 亚洲一区精品电影| 欧美国产免费| 欧美午夜激情视频| 久久久免费精品视频| 性做久久久久久久久| 欧美大胆人体视频| 欧美成人影音| 你懂的亚洲视频| 亚洲欧美日韩一区二区在线| 欧美三级精品| 欧美一区二区高清在线观看| 亚洲欧美一区二区在线观看| 日韩亚洲精品在线| 国产精品九色蝌蚪自拍| 久久国产精品久久久久久久久久| 亚洲美女黄网| 国产精品久久久久毛片软件| 亚洲欧美日韩综合一区| 一区二区三区国产在线观看| 久久尤物视频| 亚洲欧美日韩视频二区| 国产精品久久久91| 欧美在线视频不卡| 亚洲午夜一区二区三区| 国产亚洲一级高清| 免费观看久久久4p| 国产欧美日韩另类视频免费观看| 国产一区二区三区免费观看| 亚洲小视频在线观看| 91久久久久久久久久久久久| 久久免费视频在线| 麻豆精品视频在线观看视频| 99国产精品99久久久久久| 亚洲综合社区| 久久久蜜臀国产一区二区| 久久蜜桃资源一区二区老牛| 黄色资源网久久资源365| 久久久精品午夜少妇| 红桃视频欧美| 国产日韩精品久久| 亚洲国产欧美在线人成| 欧美三级中文字幕在线观看| 欧美日韩亚洲综合一区| 欧美激情综合亚洲一二区| 久久国产婷婷国产香蕉| 亚洲欧美偷拍卡通变态| 一区二区日韩欧美| 欧美日韩一区视频| 久久人人97超碰国产公开结果| 亚洲欧美日韩网| 欧美影院视频| 久久噜噜噜精品国产亚洲综合| 91久久精品日日躁夜夜躁欧美| 另类国产ts人妖高潮视频| 亚洲国内高清视频| 久久精品国产亚洲精品| 国内久久精品| 国产情侣久久| 中文精品99久久国产香蕉| 欧美日韩国产综合视频在线观看中文| 日韩一级在线| 欧美高清在线精品一区| 久久精品水蜜桃av综合天堂| 久久综合久久综合久久综合| 日韩亚洲欧美高清| 日韩视频在线观看国产| 亚洲裸体视频| 亚洲一区日韩| 久久亚洲免费| 在线观看一区二区精品视频| 精久久久久久| 欧美日韩国产麻豆| 国产亚洲欧美色| 国产精品一区二区三区乱码| 欲色影视综合吧| 欧美日韩亚洲一区在线观看| 91久久久久久国产精品| 在线日韩中文| 欧美理论视频| 免费在线欧美黄色| 欧美一级片久久久久久久| 一区二区三区波多野结衣在线观看| 欧美亚日韩国产aⅴ精品中极品| 欧美亚洲一区二区在线| 国产精品久久一级| 国产一区二区三区电影在线观看| 韩日在线一区| 亚洲精品久久久久久久久| 中文国产亚洲喷潮| 久久国产欧美精品| 欧美激情一区二区久久久| 亚洲欧洲综合另类在线| 亚洲精品一品区二品区三品区| 夜夜爽www精品| 欧美色播在线播放| 性欧美videos另类喷潮| 久久精品欧美| 国产精品扒开腿做爽爽爽软件| 欧美私人啪啪vps| 国产日韩精品在线| 99香蕉国产精品偷在线观看| 韩日精品视频| 亚洲欧美精品suv| 欧美国产欧美亚洲国产日韩mv天天看完整| 久久久久久一区二区三区| 老司机免费视频久久| 国产精品一区三区| 含羞草久久爱69一区| 91久久精品国产91性色tv| 亚洲精品国产日韩| 久久精品国产免费看久久精品| 国产精品chinese| 亚洲第一区中文99精品| 亚洲一区在线观看免费观看电影高清| 久久精品一区二区三区不卡| 欧美精品久久99| 国产综合精品一区| 一本一本大道香蕉久在线精品| 欧美一级黄色网| 欧美日韩一区在线| 国产免费观看久久黄| 91久久黄色| 欧美二区在线观看| 国内成+人亚洲| 亚洲精品你懂的| 久久精品国产久精国产一老狼| 欧美日韩国产91| 狠狠色丁香久久婷婷综合丁香| 在线观看三级视频欧美| 久久超碰97人人做人人爱| 国产精品免费区二区三区观看| 亚洲精品在线免费| 欧美日韩在线免费观看| 国产午夜亚洲精品理论片色戒| 国产精品久久一区主播| 日韩视频第一页| 亚洲最新视频在线播放| 国产在线精品成人一区二区三区| 欧美一区三区三区高中清蜜桃| 欧美二区不卡| 黑人极品videos精品欧美裸| 欧美日韩亚洲精品内裤| 久久性天堂网| 国产无遮挡一区二区三区毛片日本| 亚洲性视频h| 国产精品五区| 午夜精品999| 欧美日韩一区综合|