日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

DDA3020代做、代寫Python語言編程
DDA3020代做、代寫Python語言編程

時間:2024-10-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DDA3020 Homework 1
Due date: Oct 14, 2024
Instructions
• The deadline is 23:59, Oct 14, 2024.
• The weight of this assignment in the ffnal grade is 20%.
• Electronic submission: Turn in solutions electronically via Blackboard. Be sure to submit
 your homework as one pdf ffle plus two python scripts. Please name your solution ffles as
”DDA3020HW1 studentID name.pdf”, ”HW1 yourID Q1.ipynb” and ”HW1 yourID Q2.ipynb”.
(.py ffles also acceptable)
• Note that late submissions will result in discounted scores: 0-24 hours → 80%, 24-120 hours
→ 50%, 120 or more hours → 0%.
• Answer the questions in English. Otherwise, you’ll lose half of the points.
• Collaboration policy: You need to solve all questions independently and collaboration between
students is NOT allowed.
1 Written Problems (50 points)
1.1. (Learning of Linear Regression, 25 points) Suppose we have training data:
{(x1, y1),(x2, y2), . . . ,(xN , yN )},
where xi ∈ R
d and yi ∈ R
k
, i = 1, 2, . . . , N.
i) (9 pts) Find the closed-form solution of the following problem.
min
W,b
X
N
i=1
∥yi − Wxi − b∥
2
2
,
ii) (8 pts) Show how to use gradient descent to solve the problem. (Please state at least one
possible Stopping Criterion)
1DDA3020 Machine Learning Autumn 2024, CUHKSZ
iii) (8 pts) We further suppose that x1, x2, . . . , xN are drawn from N (µ, σ
2
). Show that the
maximum likelihood estimation (MLE) of σ
2
is σˆ
2
MLE =
1
N
PN
n=1
(xn − µMLE)
2
.
1.2. (Support Vector Machine, 25 points) Given two positive samples x1 = (3, 3)
T
, x2 =
(4, 3)
T
, and one negative sample x3 = (1, 1)
T
, ffnd the maximum-margin separating hyperplane and
support vectors.
Solution steps:
i) Formulating the Optimization Problem (5 pts)
ii) Constructing the Lagrangian (5 pts)
iii) Using KKT Conditions (5 pts)
iv) Solving the Equations (5 pts)
v) Determining the Hyperplane Equation and Support Vectors (5 pts)
2 Programming (50 points)
2.1. (Linear regression, 25 points) We have a labeled dataset D = {(x1, y1),(x2, y2),
· · · ,(xn, yn)}, with xi ∈ R
d being the d-dimensional feature vector of the i-th sample, and yi ∈ R
being real valued target (label).
A linear regression model is give by
fw0,...,wd
(x) = w0 + w1x1 + w2x2 + · · · + wdxd, (1)
where w0 is often called bias and w1, w2, . . . , wd are often called coefffcients.
Now, we want to utilize the dataset D to build a linear model based on linear regression.
We provide a training set Dtrain that includes 2024 labeled samples with 11 features (See linear
 regression train.txt) to fft model, and a test set Dtest that includes 10 unlabeled samples with
11 features (see linear regression test.txt) to estimate model.
1. Using the LinearRegression class from Sklearn package to get the bias w0 and the coefffcients
w1, w2, . . . , w11, then computing the yˆ = f(x) of test set Dtest by the model trained well. (Put
the estimation of w0, w1, . . . , w11 and these yˆ in your answers.)
2. Implementing the linear regression by yourself to obtain the bias w0 and the coefffcients
w1, w2, . . . , w11, then computing the yˆ = f(x) of test set Dtest. (Put the estimation of
w0, w1, . . . , w11 and these yˆ in your answers. It is allowed to compute the inverse of a matrix
using the existing python package.)
2DDA3020 Machine Learning Autumn 2024, CUHKSZ
(Hint: Note that for linear regression train.txt, there are 2024 rows with 12 columns where the
ffrst 11 columns are features x and the last column is target y and linear regression test.txt
only contains 10 rows with 11 columns (features). Both of two tasks require the submission of
code and results. Put all the code in a “HW1 yourID Q1.ipynb” Jupyter notebook. ffle.(”.py”
ffle is also acceptable))
2.2. (SVM, 25 points)
Task Description You are asked to write a program that constructs support vector machine
models with different kernel functions and slack variables.
Datasets You are provided with the iris dataset. The data set contains 3 classes of 50 instances
each, where each class refers to a type of iris plant. There are four features: 1. sepal length in cm;
2. sepal width in cm; 3. petal length in cm; 4. petal width in cm. You need to use these features
to classify each iris plant as one of the three possible types.
What you should do You should use the SVM function from python sklearn package, which
provides various forms of SVM functions. For multiclass SVM you should use the one vs rest
strategy. You are recommended to use sklearn.svm.svc() function. You can use numpy for vector
manipulation. For technical report, you should report the results required as mentioned below (e.g.
training error, testing error, and so on).
1. (2 points) Split training set and test set. Split the data into a training set and a test set.
The training set should contain 70% of the samples, while the test set should include 30%.
The number of samples from each category in both the training and test sets should reffect
this 70-30 split; for each category, the ffrst 70% of the samples will form the training set, and
the remaining 30% will form the test set. Ensure that the split maintains the original order
of the data. You should report instance ids in the split training set and test set. The output
format is as follows:
Q2.2.1 Split training set and test set:
Training set: xx
Test set: xx
You should ffll up xx in the template. You should write ids for each set in the same line with
comma separated, e.g. Training set:[1, 4, 19].
2. (10 points) Calculation using Standard SVM Model (Linear Kernel). Employ the
standard SVM model with a linear kernel. Train your SVM on the split training dataset and
3DDA3020 Machine Learning Autumn 2024, CUHKSZ
validate it on the testing dataset. Calculate the classiffcation error for both the training and
testing datasets, output the weight vector w, the bias b, and the indices of support vectors
(start with 0). Note that the scikit-learn package does not offer a function with hard margin,
so we will simulate this using C = 1e5. You should ffrst print out the total training error
and testing error, where the error is
wrong prediction
number of data
. Then, print out the results for each class
separately (note that you should calculate errors for each class separately in this part). You
should also mention in your report which classes are linear separable with SVM without slack.
The output format is as follows:
Q2.2.2 Calculation using Standard SVM Model:
total training error: xx, total testing error: xx,
class setosa:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
class versicolor:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
class virginica:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
Linear separable classes: xx
If we view the one vs all strategy as combining the multiple different SVM, each one being
a separating hyperplane for one class and the rest of the points, then the w, b and support
vector indices for that class is the corresponding parameters for the SVM separating this class
and the rest of the points. If a variable is of vector form, say a =


1
2
3
?**4;
?**5;?**5;?**6;, then you should write
each entry in the same line with comma separated e.g. [1,2,3].
3. (6 points) Calculation using SVM with Slack Variables (Linear Kernel). For each
C = 0.25 × t, where t = 1, 2, . . . , 4, train your SVM on the training dataset, and subsequently
validate it on the testing dataset. Calculate the classiffcation error for both the training and
testing datasets, the weight vector w, the bias b, and the indices of support vectors, and the
slack variable ζ of support vectors (you may compute it as max(0, 1 − y · f(X)). The output
format is as follows:
Q2.2.3 Calculation using SVM with Slack Variables (C = 0.25 × t, where t = 1, . . . , 4):
4DDA3020 Machine Learning Autumn 2024, CUHKSZ
-------------------------------------------
C=0.25,
total training error: xx, total testing error: xx,
class setosa:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
slack variable: xx,
class versicolor:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
slack variable: xx,
class virginica:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
slack variable: xx,
-------------------------------------------
C=0.5,
<... results for (C=0.5) ...>
-------------------------------------------
C=0.75,
<... results for (C=0.75) ...>
-------------------------------------------
C=1,
<... results for (C=1) ...>
4. (7 points) Calculation using SVM with Kernel Functions. Conduct experiments with
different kernel functions for SVM without slack variable. Calculate the classiffcation error
for both the training and testing datasets, and the indices of support vectors for each kernel
type:
(a) 2nd-order Polynomial Kernel
(b) 3nd-order Polynomial Kernel
(c) Radial Basis Function Kernel with σ = 1
(d) Sigmoidal Kernel with σ = 1
The output format is as follows:
5DDA3020 Machine Learning Autumn 2024, CUHKSZ
Q2.2.4 Calculation using SVM with Kernel Functions:
-------------------------------------------
(a) 2nd-order Polynomial Kernel,
total training error: xx, total testing error: xx,
class setosa:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
class versicolor:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
class virginica:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
-------------------------------------------
(b) 3nd-order Polynomial Kernel,
<... results for (b) ...>
-------------------------------------------
(c) Radial Basis Function Kernel with σ = 1,
<... results for (c) ...>
-------------------------------------------
(d) Sigmoidal Kernel with σ = 1,
<... results for (d) ...>
Submission Submit your executable code in a “HW1 yourID Q2.ipynb” Jupyter notebook(”.py”
file is also acceptable). Indicate the corresponding question number in the comment for each cell,
and ensure that your code can logically produce the required results for each question in the required
format. Please note that you need to write clear comments and use appropriate function/variable
names. Excessively unreadable code may result in point deductions.

6

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代做CS 259、Java/c++設計程序代寫
  • 下一篇:代做MSE 280、代寫Matlab程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲香蕉网站| 老司机精品视频网站| 欧美日韩在线视频一区二区| 在线不卡亚洲| 亚洲与欧洲av电影| 欧美激情中文字幕在线| 国产视频精品va久久久久久| 国产精品日韩精品欧美在线| 美女尤物久久精品| 亚洲欧美日韩精品久久亚洲区| 在线观看亚洲| 亚洲综合第一| 亚洲第一中文字幕在线观看| 欧美日韩黄色大片| 亚洲第一精品夜夜躁人人躁| 国产精品视频yy9299一区| 一区二区91| 国产精品99久久久久久www| 日韩一区二区精品| 99国产一区二区三精品乱码| 一区二区三区在线免费视频| 亚洲欧美视频一区| 一区免费视频| 亚洲欧美经典视频| 国产综合久久久久久| 国产一区二区三区av电影| 99re8这里有精品热视频免费| 欧美影院在线播放| 国产精品美女久久福利网站| 一区二区三欧美| 亚洲人成在线观看| 亚洲专区在线| 99国产精品久久久| 国产精品婷婷午夜在线观看| 欧美bbbxxxxx| 久久不见久久见免费视频1| 国产日韩欧美夫妻视频在线观看| 欧美丝袜一区二区| 国产欧美日韩一区二区三区| 亚洲综合精品自拍| 久久黄色级2电影| 亚洲在线观看免费视频| 久久久久久久91| 欧美一区二区三区视频在线| 国产精品久在线观看| 亚洲精品乱码久久久久久| 日韩亚洲在线观看| 日韩视频中文字幕| 欧美日韩成人综合天天影院| 欧美激情一区二区三级高清视频| 久久网站热最新地址| 久久av二区| 久久综合九色综合网站| 欧美一区二区高清在线观看| 欧美日韩亚洲一区二区| 欧美亚洲一级片| 亚洲欧洲日产国产网站| 亚洲精品之草原avav久久| 久久亚洲精品视频| 国产美女诱惑一区二区| 亚洲午夜av在线| 免费国产自线拍一欧美视频| 欧美电影免费| 亚洲国产欧美一区二区三区久久| 欧美激情按摩| 国产亚洲一区二区三区在线播放| 国产精品午夜国产小视频| 性色一区二区三区| 黄色成人在线免费| 一区二区日韩伦理片| 欧美成人一区二区三区| 亚洲综合久久久久| 久久人体大胆视频| 国产欧美日韩亚州综合| 国产亚洲a∨片在线观看| 狠狠爱成人网| 亚洲国产精品123| 亚洲免费视频中文字幕| 国产伦精品一区二区三区照片91| 极品裸体白嫩激情啪啪国产精品| 最新日韩欧美| 欧美专区日韩视频| 国产在线精品成人一区二区三区| 欧美日韩mp4| 在线亚洲欧美专区二区| 揄拍成人国产精品视频| 欧美日韩成人免费| 亚洲欧美日韩精品久久奇米色影视| 国产情人综合久久777777| 亚洲欧美文学| 欧美一区深夜视频| 欧美色网一区二区| 精品成人一区二区三区| 国产主播在线一区| 亚洲精品一区久久久久久| 欧美色视频一区| 一级日韩一区在线观看| 亚洲欧洲一区二区三区久久| 久久免费视频观看| 欧美亚洲一区二区在线观看| 欧美绝品在线观看成人午夜影视| 久久夜色精品国产亚洲aⅴ| 久久国产精彩视频| 亚洲女女做受ⅹxx高潮| 国产伦精品一区二区三区四区免费| 一区二区三区免费网站| 欧美成人免费全部观看天天性色| 欧美系列电影免费观看| 亚洲伊人第一页| 亚洲欧美精品中文字幕在线| 国产综合视频在线观看| 在线视频免费在线观看一区二区| 欧美激情影院| 欧美在线999| 国产精品久久久久久亚洲调教| 国产麻豆精品视频| 海角社区69精品视频| 欧美日韩国产首页在线观看| 欧美一级电影久久| 亚洲一区在线观看免费观看电影高清| 欧美三区免费完整视频在线观看| 久久综合九色综合久99| 久久精品国产一区二区三区免费看| 欧美成人免费一级人片100| 欧美福利视频在线观看| 国产精品欧美经典| 日韩一二三区视频| 欧美在线免费观看亚洲| 精品91视频| 欧美日韩综合视频网址| 国产女人精品视频| 国产精品资源在线观看| 久久在线精品| 欧美有码在线观看视频| 欧美成年网站| 久久午夜影视| 欧美紧缚bdsm在线视频| 亚洲影视综合| 亚洲一区欧美激情| 国内免费精品永久在线视频| 国产精品影视天天线| 亚洲毛片在线观看| 国产精品色婷婷久久58| 亚洲国产欧美一区二区三区久久| 国产区二精品视| 国内外成人免费激情在线视频网站| 国内精品久久久久久久果冻传媒| 国产精品九九| 在线播放豆国产99亚洲| 久久九九免费视频| 亚洲日韩欧美视频| 亚洲国产美国国产综合一区二区| 一区二区av在线| 国产精品一区二区久久久久| 欧美精品一区二区三区久久久竹菊| 欲香欲色天天天综合和网| 亚洲一区二区精品在线| 亚洲精品中文字幕在线| 欧美在线播放高清精品| 久久露脸国产精品| 一区二区三区在线视频免费观看| 亚洲综合日本| 亚洲国产精品va在线观看黑人| 午夜精品三级视频福利|