日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INFS3208、代做Python語言編程
代寫INFS3208、代做Python語言編程

時間:2024-10-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Information Technology and Electrical Engineering 
INFS**08 – Cloud Computing 
Programming Assignment Task III (10 Marks) 
Task description: 
In this assignment, you are asked to write a piece of Spark code to count occurrences of verbs in the 
UN debates and find the most similar debate contents. The returned result should be the top 10 
verbs that are most frequently used in all debates and the debate that is most similar to the one 
we provide. This assignment is to test your ability to use transformation and action operations in Spark 
RDD programming and your understanding of Vector Database. You will be given three files, 
including a UN General Debates dataset (un-general-debates.csv), a verb list (all_verbs.txt) 
and a verb dictionary file (verb_dict.txt). These source files are expected to be stored in a HDFS. 
You can choose either Scala or Python to complete this assignment in the Jupyter Notebook. There are 
some technical requirements in your code submission as follows: 
 
Objectives: 
1. Read Source Files from HDFS and Create RDDs (1.5 marks): 
• Read the UN General Debates dataset (un-general-debates.csv) from HDFS and 
convert only the “text” column into an RDD. Details of un-general-debates.csv are 
provided in the Preparation section below (1 mark). 
• Read the verb list file (all_verbs.txt) and verb dictionary file (verb_dict.txt) from 
HDFS and load them into separate RDDs (0.5 marks). 
• Note: If you failed to read files from HDFS, you can still read them from the local file 
system in work/nbs/ and complete the following tasks. 
2. Use Learned RDD Operations to Preprocess the Debate Texts (3 marks): 
• Remove empty lines (0.5 marks). 
• Remove punctuations that could attach to the verbs (0.5 marks). 
o E.g., “work,” and “work” will be counted differently, if you DO NOT remove the 
punctuation. 
• Change the capitalization or case of text (0.5 marks). 
o E.g., “WORK”, “Work” and “work” will be counted as three different verbs, if you 
DO NOT make all of them in lower-case. 
• Find all verbs in the RDD by matching the words in the given verb list (all_verbs.txt) 
(0.5 mark). 
• Convert all verbs in different tenses into the simple present tense by looking up the 
verbs in the verb dictionary list (verb_dict.txt) (1 mark). 
o E.g., regular verb: “work” - works”, “worked”, and “working”. 
o E.g., irregular verb: “begin” - “begins”, “began”, and “begun”. o E.g., linking verb “be” and its various forms, including “is”, “am”, “are”, “was”, 
“were”, “being” and “been”. 
o E.g., (work, 100), (works,50), (working,150) should be counted as (work, 300). 
3. Use learned RDD Operations to Count Verb Frequency (3 marks): 
• Count the top 10 frequently used verbs in UN debates (2 marks). 
• Display the results in the format (“verb1”, count1), (“verb2”, count2), … and in a 
descending order of the counts (1 marks). 
4. Use Vector Database (Faiss) to Find the Most Similar Debate (2.5 marks): 
• Convert the original debates into vectors and store them in a proper Index (1.5 mark). 
• Search the debate content that has the most similar idea to “Global climate change is 
both a serious threat to our planet and survival.” (1 mark) 
 
 
Preparation: 
In this individual coding assignment, you will apply your knowledge of Vector Database, Spark, Spark 
RDD Programming and HDFS (in Lectures 7-10). Firstly, you should read Task Description to 
understand what the task is and what the technical requirements include. Secondly, you should review 
the creation and usage of Faiss, transformations and actions in Spark, and usage of HDFS in Lectures 
and Practicals 7-10. In the Appendix, there are some transformation and action operations you could 
use in this assignment. Lastly, you need to write the code (Scala or Python) in the Jupyter Notebook. 
All technical requirements need to be fully met to achieve full marks. You can either practise on 
the GCP’s VM or your local machine with Oracle Virtualbox if you are unable to access GCP. Please 
read the Example of writing Spark code below to have more details. 
 
 
Assignment Submission: 
 You need to compress only the Jupyter Notebook (.ipynb) file. 
 The name of the compressed file should be named “FirstName_LastName_StudentNo.zip”. 
 You must make an online submission to Blackboard before 3:00 PM on Friday, 11/10/2024 
 Only one extension application could be approved due to medical conditions. 
 
 
Main Steps: 
Step 1: 
Log in your VM instance and change to your home directory. We recommend using a VM instance 
with at least 4 vCPUs, 8G memory and 20GB free disk space. 
 
Step 2: 
git clone https://github.com/csenw/cca3.git && cd cca3 
Run these commands to download the required docker-compose.yml file and configuration files. Step 3: 
sudo chmod -R 777 nbs/ 
docker-compose up -d 
Run all the containers using docker-compose 
 
 
 
Step 4: 
Open the Jupyter Notebook (http://external_IP:8888) and you can find all the files under the 
work/nbs/ folder. This is also the folder where you should write the notebook (.ipynb) file. 
 
 Step 5: 
docker ps 
docker exec <container_id> hdfs dfs -put /home/nbs/all_verbs.txt /all_verbs.txt 
docker exec <container_id> hdfs dfs -put /home/nbs/verb_dict.txt /verb_dict.txt 
docker exec <container_id> hdfs dfs -put /home/nbs/un-general-debates.csv /ungeneral-debates.csv

Run the above commands to put the three source files into HDFS. Substitute <container_id> with 
your namenode container ID. After that, you should see the three files from HDFS web interface at 
http://external_IP/explorer.html 
 
 
Step 6: 
The un-general-debates.csv is a dataset that includes the text of each country’s statement from 
the general debate, separated by “country”, “session”, “year” and “text”. This dataset includes over 
forty years of data from different countries, which allows for the exploration of differences between 
countries and over time [1,2]. It is organized in the following format: 
 
In this assignment, we only consider the “text” column. 
The verb_dict.txt file contains different tenses of each verb, separated by commas. The first word 
is the simple present tense of the verb. 
 The all_verbs.txt file contains all the verbs. 
 
 
Step 7: 
Create a Jupyter Notebook to complete the programming objectives. 
We provide some intermediate output samples below. Please note that these outputs are NOT answers 
and may vary from your outputs due to different implementations and different Spark behaviours. 
• Intermediate output sample 1, take only verbs: 
 
 
• Intermediate output sample 2, top 10 verb counts (without converting verb tenses): 
 
 • Intermediate output sample 3, most similar debate: 
 
You are free to use your own implementation. However, your result should reasonably reflect the top 
10 verbs that are most frequently used in UN debates, and the most similar debate contents to the 
sentence “Global climate change is both a serious threat to our planet and survival.” 
 
 
Reference: 
[1] UN General Debates, https://www.kaggle.com/datasets/unitednations/un-general-debates. 
[2] Alexander Baturo, Niheer Dasandi, and Slava Mikhaylov, "Understanding State Preferences With 
Text As Data: Introducing the UN General Debate Corpus". Research & Politics, 2017. 
 
 Appendix: 
Transformations: 
Transformation Meaning 
map(func) Return a new distributed dataset formed by passing each element of the 
source through a function func. 
filter(func) Return a new dataset formed by selecting those elements of the source on 
which funcreturns true. 
flatMap(func) Similar to map, but each input item can be mapped to 0 or more output 
items (so funcshould return a Seq rather than a single item). 
union(otherDataset) Return a new dataset that contains the union of the elements in the source 
dataset and the argument. 
intersection(otherDataset) Return a new RDD that contains the intersection of elements in the source 
dataset and the argument. 
distinct([numPartitions])) Return a new dataset that contains the distinct elements of the source 
dataset. 
groupByKey([numPartitions]) When called on a dataset of (K, V) pairs, returns a dataset of (K, 
Iterable<V>) pairs. 
Note: If you are grouping in order to perform an aggregation (such as a 
sum or average) over each key, using reduceByKey or aggregateByKey will 
yield much better performance. 
Note: By default, the level of parallelism in the output depends on the 
number of partitions of the parent RDD. You can pass an 
optional numPartitions argument to set a different number of tasks. 
reduceByKey(func, 
[numPartitions]) 
When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs 
where the values for each key are aggregated using the given reduce 
function func, which must be of type (V,V) => V. Like in groupByKey, the 
number of reduce tasks is configurable through an optional second 
argument. 
sortByKey([ascending], 
[numPartitions]) 
When called on a dataset of (K, V) pairs where K implements Ordered, 
returns a dataset of (K, V) pairs sorted by keys in ascending or descending 
order, as specified in the boolean ascending argument. 
join(otherDataset, 
[numPartitions]) 
When called on datasets of type (K, V) and (K, W), returns a dataset of (K, 
(V, W)) pairs with all pairs of elements for each key. Outer joins are 
supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin. 
 
 Actions: 
Action Meaning 
reduce(func) Aggregate the elements of the dataset using a function func (which takes 
two arguments and returns one). The function should be commutative 
and associative so that it can be computed correctly in parallel. 
collect() Return all the elements of the dataset as an array at the driver program. 
This is usually useful after a filter or other operation that returns a 
sufficiently small subset of the data. 
count() Return the number of elements in the dataset. 
first() Return the first element of the dataset (similar to take(1)). 
take(n) Return an array with the first n elements of the dataset. 
countByKey() Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs 
with the count of each key. 
foreach(func) Run a function func on each element of the dataset. This is usually done 
for side effects such as updating an Accumulator or interacting with 
external storage systems. 
Note: modifying variables other than Accumulators outside of 
the foreach() may result in undefined behavior. See Understanding 
closures for more details. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫comp2022、代做c/c++,Python程序設計
  • 下一篇:代做320SC編程、代寫Python設計程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美成人午夜影院| 日韩视频一区二区三区在线播放| 在线精品国产成人综合| 激情成人中文字幕| 亚洲精品视频中文字幕| 欧美午夜精品电影| 欧美一区二区三区啪啪| 亚洲靠逼com| 国产精品色午夜在线观看| 在线观看欧美一区| 欧美日产一区二区三区在线观看| 欧美国产日本| 久久天天躁夜夜躁狠狠躁2022| 国产精品成人一区二区三区吃奶| 久久国产欧美精品| 欧美成人国产va精品日本一级| 久久久久成人精品免费播放动漫| 国模吧视频一区| 性做久久久久久久免费看| 亚洲精品在线视频| 亚洲综合精品自拍| 国产亚洲一区在线播放| 欧美精品播放| 国外成人网址| 欧美日韩精品在线视频| 久久久噜噜噜久久狠狠50岁| 亚洲精品视频一区二区三区| 欧美成人官网二区| 欧美理论大片| 亚洲激情自拍| 99视频精品免费观看| 欧美成人中文字幕在线| 亚洲国产精品黑人久久久| 韩日欧美一区| 久久久久久网址| 欧美午夜片欧美片在线观看| 99re6这里只有精品视频在线观看| 国产精品成人av性教育| 欧美日韩精品伦理作品在线免费观看| 性欧美xxxx大乳国产app| 亚洲欧美日韩视频一区| 亚洲女爱视频在线| 国产精品久久久久久久久动漫| 国产精品美女诱惑| 91久久精品国产91久久性色| 欧美好骚综合网| 国产综合精品| 欧美日韩另类综合| 国产精品美女一区二区| 亚洲影院在线| 亚洲国产va精品久久久不卡综合| 国产精品久久97| 美女精品自拍一二三四| 欧美精品二区三区四区免费看视频| 伊人久久av导航| 在线成人免费视频| 99re6这里只有精品| 亚洲激情成人| 在线观看日韩国产| 欧美一级夜夜爽| 久久人人超碰| 欧美久久综合| 亚洲欧美成人综合| 亚洲精品国产拍免费91在线| 国产婷婷精品| 激情久久五月天| 国产精品二区三区四区| 欧美性事在线| aaa亚洲精品一二三区| 久久久激情视频| 一区二区免费在线观看| 国内外成人在线| 亚洲人成网站在线播| 欧美亚洲色图校园春色| 国际精品欧美精品| 国产亚洲精品成人av久久ww| 亚洲欧洲日夜超级视频| 一区二区三区日韩精品| 国产精品国产三级国产aⅴ无密码| 欧美日韩国产成人在线91| 亚洲六月丁香色婷婷综合久久| 日韩视频一区二区三区在线播放免费观看| 欧美巨乳在线观看| 亚洲国产你懂的| 欧美成人影音| 亚洲毛片在线看| 国产午夜精品视频| 亚洲国产欧美国产综合一区| 国产免费观看久久黄| 欧美成人免费在线视频| 欧美日本成人| 麻豆9191精品国产| 在线观看亚洲| 欧美一区激情视频在线观看| 一本色道久久综合亚洲91| 亚洲国产另类 国产精品国产免费| 欧美不卡激情三级在线观看| 亚洲最新视频在线播放| 久久精品视频在线播放| 免费亚洲网站| 激情欧美国产欧美| 欧美在线关看| 欧美视频手机在线| 激情成人av在线| 欧美一区二区在线免费播放| 最新国产の精品合集bt伙计| 欧美激情综合亚洲一二区| 国产日韩欧美在线视频观看| 久久综合狠狠综合久久综青草| 欧美mv日韩mv国产网站| 久久精品天堂| 久久国产主播精品| 国产精品成人播放| 99re成人精品视频| 亚洲欧美视频在线| 国产视频在线一区二区| 性做久久久久久久久| 国产在线麻豆精品观看| 久热精品视频在线免费观看| 国产精品麻豆va在线播放| 欧美综合77777色婷婷| 中文无字幕一区二区三区| 欧美日韩亚洲精品内裤| 欧美与欧洲交xxxx免费观看| 激情婷婷久久| 亚洲国产色一区| 欧美电影在线观看完整版| 蜜臀99久久精品久久久久久软件| 免费观看在线综合| 小黄鸭视频精品导航| 亚洲精品视频二区| 亚洲一区二区三区成人在线视频精品| 国产精品成人一区二区艾草| 午夜精品三级视频福利| 精品69视频一区二区三区| 国产在线播放一区二区三区| 日韩午夜在线| 国产精品美女视频网站| 久久久精品一区二区三区| 国产主播一区二区三区四区| 欧美日韩综合一区| 久久精品国产久精国产一老狼| 国产精品视频xxx| 在线观看91精品国产入口| 国产精品久久中文| 欧美专区亚洲专区| 亚洲制服欧美中文字幕中文字幕| 亚洲精品乱码久久久久久按摩观| 欧美国产精品| 国产伦精品一区二区三区视频孕妇| 国产精品久久久久9999吃药| 午夜一区在线| 黄色一区二区在线| 国产一区二区三区的电影| 亚洲欧洲综合另类| 国产欧美一区二区三区在线老狼| 亚洲午夜久久久久久尤物| 浪潮色综合久久天堂| 久久精品国产免费观看| 欧美日韩99| 亚洲自拍16p| 久久精品国产综合| 国产一区视频网站| 欧美日韩综合另类|