日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

UMEECS542代做、代寫Java/c++編程語言
UMEECS542代做、代寫Java/c++編程語言

時間:2024-10-05  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



UMEECS542: AdvancedTopicsinComputerVision Homework#2: DenoisingDiffusiononTwo-PixelImages
Due: 14October202411:59pm
The field of image synthesis has evolved significantly in recent years. From auto-regressive models and Variational Autoencoders (VAEs) to Generative Adversarial Networks (GANs), we have now entered a new era of diffusion models. A key advantage of diffusion models over other generative approaches is their ability to avoid mode collapse, allowing them to produce a diverse range of images. Given the high dimensionality of real images, it is impractical to sample and observe all possible modes directly. Our objective is to study denoising diffusion on two-pixel images to better understand how modes are generated and to visualize the dynamics and distribution within a 2D space.
1 Introduction
Diffusion models operate through a two-step process (Fig. 1): forward and reverse diffusion.
Figure 1: Diffusion models have a forward process to successively add noise to a clear image x0 and a backward process to successively denoise an almost pure noise image xT [2].
During the forward diffusion process, noise εt is incrementally added to the original data at time step t, over more time steps degrading it to a point where it resembles pure Gaussian noise. Let εt represent standard Gaussian noise, we can parameterize the forward process as xt ∼ N (xt|√1 − βt xt−1, βt I):
q(xt|xt−1) = 􏰆1 − βt xt−1 + 􏰆βt εt−1 (1) 0<βt <1. (2)
Integrating all the steps together, we can model the forward process in a single step:
√√
xt= α ̄txo+ 1−α ̄tε (3)
αt =1−βt (4) α ̄ t = α 1 × α 2 × · · · × α t (5)
As t → ∞, xt is equivalent to an isotropic Gaussian distribution. We schedule β1 < β2 < ... < βT , as larger update steps are more appropriate when the image contains significant noise.
    1

The reverse diffusion process, in contrast, involves the model learning to reconstruct the original data from a noisy version. This requires training a neural network to iteratively remove the noise, thereby recovering the original data. By mastering this denoising process, the model can generate new data samples that closely resemble the training data.
We model each step of the reverse process as a Gaussian distribution
pθ(xt−1|xt) = N (xt−1|μθ(xt, t), Σθ(xt, t)) . (6)
It is noteworthy that when conditioned on x0, the reverse conditional probability is tractable:
q(x |x,x )=N⭺**;x |μ,βˆI􏰃, (7)
t−1 t 0 t−1 t t
where, using the Bayes’ rule and skipping many steps (See [8] for reader-friendly derivations), we have:
1⭺**; 1−αt 􏰃
μt=√α xt−√1−α ̄εt . (8)
tt
We follow VAE[3] to optimize the negative log-likelihood with its variational lower bound with respect to μt and μθ(xt,t) (See [6] for derivations). We obtain the following objective function:
L=Et∼[1,T],x0,ε􏰀∥εt −εθ(xt,t)∥2􏰁. (9) The diffusion model εθ actually predicts the noise added to x0 from xt at timestep t.
a) many-pixel images b) two-pixel images
Figure 2: The distribution of images becomes difficult to estimate and distorted to visualize for many- pixel images, but simple to collect and straightforward to visualize for two-pixel images. The former requires dimensionality reduction by embedding values of many pixels into, e.g., 3 dimensions, whereas the latter can be directly plotted in 2D, one dimension for each of the two pixels. Illustrated is a Gaussian mixture with two density peaks, at [-0.35, 0.65] and [0.75, -0.45] with sigma 0.1 and weights [0.35, 0.65] respectively. In our two-pixel world, about twice as many images have a lighter pixel on the right.
In this homework, we study denoising diffusion on two-pixel images, where we can fully visualize the diffusion dynamics over learned image distributions in 2D (Fig. 2). Sec. 2 describes our model step by step, and the code you need to write to finish the model. Sec. 3 describes the starter code. Sec. 4 lists what results and answers you need to submit.
     2

2 Denoising Diffusion Probabilistic Models (DDPM) on 2-Pixel Images
Diffusion models not only generate realistic images but also capture the underlying distribution of the training data. However, this probability density distributions (PDF) can be hard to collect for many- pixel images and their visualization highly distorted, but simple and direct for two-pixel images (Fig. 2). Consider an image with only two pixels, left and right pixels. Our two-pixel world contains two kinds of images: the left pixel lighter than the right pixel, or vice versa. The entire image distribution can be modeled by a Gaussian mixture with two peaks in 2D, each dimension corresponding to a pixel.
Let us develop DDPM [2] for our special two-pixel image collection.
2.1 Diffusion Step and Class Embedding
We use a Gaussian Fourier feature embedding for diffusion step t:
xemb = ⭺**;sin2πw0x,cos2πw0x,...,sin2πwnx,cos2πwnx􏰃, wi ∼ N(0,1), i = 1,...,n. (10)
For the class embedding, we simply need some linear layers to project the one-hot encoding of the class labels to a latent space. You do not need to do anything for this part. This part is provided in the code.
2.2 Conditional UNet
We use a UNet (Fig. 3) that takes as input both the time step t and the noised image xt, along with class label y if it is provided, and outputs the predicted noise. The network consists of only two blocks for the encoding or decoding pathway. To incorporate the step into the UNet features, we apply a dense
Figure 3: Sampe condition UNet architecture. Please note how the diffusion step and the class/text conditional embeddings are fused with the conv blocks of the image feature maps. For simplicity, we will not add the attention module for our 2-pixel use case.
 3

linear layer to transform the step embedding to match the image feature dimension. A similar embedding approach can be used for class label conditioning. The detailed architecture is as follows.
1. Encoding block 1: Conv1D with kernel size 2 + Dense + GroupNorm with 4 groups
2. Encoding block 2: Conv1D with kernel size 1 + Dense + GroupNorm with ** groups
3. Decoding block 1: ConvTranspose1d with kernel size 1 + Dense + GroupNorm with 4 groups 4. Decoding block 2: ConvTranspose1d with kernel size 1
We use SiLU [1] as our activation function. When adding class conditioning, we handle it similarly to the diffusion step.
Your to-do: Finish the model architecture and forward function in ddpm.py 2.3 Beta Scheduling and Variance Estimation
We adopt the sinusoidal beta scheduling [4] for better results then the original DDPM [2]:
α ̄t = f(t) (11)
f (0)
􏰄t/T+s π􏰅
f(t)=cos 1+s ·2 . (12) However, we follow the simpler posterior variance estimation [2] without using [4]’s learnt posterior
variance method for estimating Σθ(xt,t).
For simplicity, we declare some global variables that can be handy during sampling and training. Here is
the definition of these global variables in the code.
1. betas: βt
2. alphas: αt = 1 − βt
3. alphas cumprod: α ̄t = Πt0αi  ̃ 1−α ̄t−1
4. posterior variance: Σθ(xt, t) = σt = βt = 1−α ̄t βt
Your to-do: Code up all these variables in utils.py. Feel free to add more variables you need. 2.4 Training with and without Guidance
For each DDPM iteration, we randomly select the diffusion step t and add random noise ε to the original image x0 using the β we defined for the forward process to get a noisy image xt. Then we pass the xt and t to our model to output estimated noise εθ, and calculate the loss between the actual noise ε and estimated noise εθ. We can choose different loss, from L1, L2, Huber, etc.
To sample images, we simply follow the reverse process as described in [2]:
1􏰄1−αt 􏰅
xt−1=√α xt−√1−α ̄εθ(xt,t) +σtz, wherez∼N(0,I)ift > 1else0. (13)
tt
We consider both classifier and classifier-free guidance. Classifier guidance requires training a separate classifier and use the classifier to provide the gradient to guide the generation of diffusion models. On the other hand, classifier-free guidance is much simpler in that it does not need to train a separate model.
To sample from p(x|y), we need an estimation of ∇xt log p(xt|y). Using Bayes’ rule, we have:
∇xt log p(xt|y) = ∇xt log p(y|xt) + ∇xt log p(xt) − ∇xt log p(y) (14)
= ∇xt log p(y|xt) + ∇xt log p(xt), (15) 4
      
 Figure 4: Sample trajectories for the same start point (a 2-pixel image) with different guidance. Setting y = 0 generates a diffusion trajectory towards images of type 1 where the left pixel is darker than the right pixel, whereas setting y = 1 leads to a diffusion trajectory towards images of type 2 where the left pixel is lighter than the right pixel.
where ∇xt logp(y|xt) is the classifier gradient and ∇xt logp(xt) the model likelihood (also called score function [7]). For classifier guidance, we could train a classifier fφ for different steps of noisy images and estimate p(y|xt) using fφ(y|xt).
Classifier-free guidance in DDPM is a technique used to generate more controlled and realistic samples without the need for an explicit classifier. It enhances the flexibility and quality of the generated images by conditioning the diffusion model on auxiliary information, such as class labels, while allowing the model to work both conditionally and unconditionally.
For classifier-free guidance, we make a small modification by parameterizing the model with an additional input y, resulting in εθ(xt,t,y). This allows the model to represent ∇xt logp(xt|y). For non-conditional generation, we simply set y = ∅. We have:
∇xt log p(y|xt) = ∇xt log p(xt|y) − ∇xt log p(xt) (16) Recall the relationship between score functions and DDPM models, we have:
ε ̄θ(xt, t, y) = εθ(xt, t, y) + w (εθ(xt, t, y) − εθ(xt, t, ∅)) (17) = (w + 1) · εθ(xt, t, y) − w · εθ(xt, t, ∅), (18)
where w controls the strength of the conditional influence; w > 0 increases the strength of the guidance, pushing the generated samples more toward the desired class or conditional distribution.
During training, we randomly drop the class label to train the unconditional model. We replace the orig- inal εθ(xt, t) with the new (w + 1)εθ(xt, t, y) − wεθ(xt, t, ∅) to sample with specific class labels (Fig.4). Classifier-free guidance involves generating a mix of the model’s predictions with and without condition- ing to produce samples with stronger or weaker guidance.
Your to-do: Finish up all the training and sampling functions in utils.py for classifier-free guidance. 5

3 Starter Code
1. gmm.py defines the Gaussian Mixture model for the groundtruth 2-pixel image distribution. Your training set will be sampled from this distribution. You can leave this file untouched.
2. ddpm.py defines the model itself. You will need to follow the guideline to build your model there.
3. utils.py defines all the other utility functions, including beta scheduling and training loop module.
4. train.py defines the main loop for training.
4 Problem Set
1. (40 points) Finish the starter code following the above guidelines. Further changes are also welcome! Please make sure your training and visualization results are reproducible. In your report, state any changes that you make, any obstacles you encounter during coding and training.
2. (20 points) Visualize a particular diffusion trajectory overlaid on the estimated image distribution pθ (xt |t) at time-step t = 10, 20, 30, 40, 50, given max time-step T = 50. We estimate the PDF by sampling a large number of starting points and see where they end up with at time t, using either 2D histogram binning or Gaussian kernel density estimation methods. Fig. 5 plots the de-noising trajectory for a specific starting point overlaid on the ground-truth and estimated PDF.
Visualize such a sample trajectory overlaid on 5 estimated PDF’s at t = 10, 20, 30, 40, 50 respectively and over the ground-truth PDF. Briefly describe what you observe.
Figure 5: Sample de-noising trajectory overlaid on the estimated PDF for different steps.
3. (20 points) Train multiple models with different maximum timesteps T = 5, 10, 25, 50. Sample and de- noise 5000 random noises. Visualize and describe how the de-noised results differ from each other. Simply do a scatter plot to see how the final distribution of the 5000 de-noised samples is compared with the groundtruth distribution for each T . Note that there are many existing ways [5, 9] to make smaller timesteps work well even for realistic images. 1 plot with 5 subplots is expected here.
4. (20 points) Visualize different trajectories from the same starting noise xT that lead to different modes with different guidance. Describe what you find. 1 plot as illustrated by Fig. 4 is expected here.
5. Bonus point (30 points): Extend this model to MNIST images. Actions: Add more conv blocks for encoding/decoding; add residual layers and attention in each block; increase the max timestep to 200 or more. Four blocks for each pathway should be enough for MNIST. Show 64 generated images with any random digits you want to guide (see Figure 6). Show one trajectory of the generation from noise to a clear digit. Answer the question: Throughout the generation, is this shape of the digit generated part by part, or all at once.
 6

 Figure 6: Sample MNIST images generated by denoising diffusion with classifier-free guidance. The tensor() below is the random digits (class labels) input to the sampling steps.
7

5 Submission Instructions
1. This assignment is to be completed individually.
2. Submissions should be made through Gradescope and Canvas. Please upload:
(a) A PDF file of the graph and explanation: This file should be submitted on gradescope. Include your name, student ID, and the date of submission at the top of the first page. Write each problem on a different page.
(b) A folder containing all code files: This folder will be submitted under the folder of your uniq- name on our class server. Please leave all your visualization codes inside as well, so that we can reproduce your results if we find any graphs strange.
(c) If you believe there may be an error in your code, please provide a written statement in the pdf describing what you think may be wrong and how it affected your results. If necessary, provide pseudocode and/or expected results for any functions you were unable to write.
3. You may refactor the code as desired, including adding new files. However, if you make substantial changes, please leave detailed comments and reasonable file names. You are not required to create separate files for every model training/testing: commenting out parts of the code for different runs like in the scaffold is all right (just add some explanation).


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代做CS 839、代寫python/Java設計編程
  • 下一篇:代寫Hashtable編程、代做python/c++程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲国产精品日韩| 在线视频欧美一区| 国产精品永久免费视频| 久久午夜影视| 免费一级欧美在线大片| 亚洲人成在线观看一区二区| 久热精品视频在线免费观看| 久久精品成人一区二区三区| 亚洲韩国青草视频| 亚洲美女精品久久| 国产一区在线观看视频| 亚洲在线成人精品| 国产热re99久久6国产精品| 国产精品夜夜嗨| 久久综合亚洲社区| 国产色综合久久| 久久电影一区| 亚洲在线网站| 国产日韩欧美一二三区| 午夜精品福利视频| 精品成人国产| 欧美日韩激情小视频| 久久久久久999| 欧美人与禽性xxxxx杂性| 久久久91精品国产一区二区精品| 国内成人精品一区| 欧美精品麻豆| 久久福利影视| 久久久久综合一区二区三区| 亚洲精品你懂的| 午夜在线观看免费一区| 亚洲一级片在线看| 亚洲一卡二卡三卡四卡五卡| 亚洲精品免费网站| 在线观看欧美日韩国产| 亚洲精品一区二区三区99| 性久久久久久久久久久久| 亚洲欧美中日韩| 国产麻豆午夜三级精品| 欧美色精品天天在线观看视频| 国产精品女人久久久久久| 久久av一区二区三区| 午夜精品婷婷| 国产一区二区三区四区老人| 欧美精品v日韩精品v国产精品| 在线看欧美日韩| 激情欧美一区二区三区在线观看| 亚洲精选一区| 伊甸园精品99久久久久久| 国产在线精品一区二区中文| 国产精品日韩欧美大师| 久热这里只精品99re8久| 午夜精品99久久免费| 久久国产精品毛片| 亚洲欧美成人精品| 久久久久88色偷偷免费| 久久最新视频| 国产精品任我爽爆在线播放| 国模精品娜娜一二三区| 欧美成人性生活| 亚洲欧美日韩中文在线制服| 在线色欧美三级视频| 日韩视频国产视频| 亚洲区欧美区| 亚洲精品欧美激情| 免费成人av资源网| 香蕉成人伊视频在线观看| 国产精品久久久久久av下载红粉| 欧美日韩国产大片| 黄色小说综合网站| 91久久久久久久久| 久久国产乱子精品免费女| 在线播放中文字幕一区| 狠狠干成人综合网| 亚洲精品五月天| 久久久久综合网| 国产日韩综合一区二区性色av| 久久综合久久美利坚合众国| 午夜精品久久久久久久白皮肤| 激情六月婷婷久久| 在线免费一区三区| 亚洲国产裸拍裸体视频在线观看乱了中文| 一区二区视频在线观看| 久久精品动漫| 影音先锋一区| 欧美激情综合五月色丁香小说| 亚洲精选在线| 一区二区三区国产在线观看| 国产免费成人在线视频| 亚洲在线中文字幕| 欧美一二三区精品| 亚洲女爱视频在线| 在线看不卡av| 免费在线成人av| 国产精品伊人日日| 国产精品亚洲成人| 一区二区三区视频在线播放| 欧美成人午夜影院| 国产精品日本| 老色鬼久久亚洲一区二区| 欧美激情一区二区三区在线视频观看| 久久综合久久久久88| 中国成人在线视频| 欧美成人四级电影| 午夜精品剧场| 亚洲综合色丁香婷婷六月图片| 国产日韩欧美一区在线| 午夜精品网站| 在线观看欧美一区| 午夜亚洲性色视频| 麻豆精品视频在线观看视频| 国产精品手机视频| 亚洲精选在线观看| 久久久久久久综合日本| 欧美—级a级欧美特级ar全黄| 国产欧美日韩在线观看| 91久久精品一区| 国产精品国产自产拍高清av| 欧美午夜电影网| 国产精品美女www爽爽爽| 久久久999国产| 黄色在线一区| 国模吧视频一区| 在线免费观看日本一区| 国产精品毛片a∨一区二区三区| 亚洲综合视频在线| 久久综合婷婷| 欧美精品乱码久久久久久按摩| 亚洲国产日韩欧美在线图片| 国产精品成人aaaaa网站| 亚洲人成在线观看一区二区| 欧美亚洲一区二区三区| 国产精品v日韩精品| 久久亚洲不卡| 99在线精品视频| 久久国产精品高清| 中日韩视频在线观看| 欧美成年人视频| 国产在线视频不卡二| 欧美一级久久久| 欧美日韩三级电影在线| 国内自拍视频一区二区三区| 欧美激情在线播放| 亚洲黄色成人网| 欧美国产成人在线| 亚洲欧美日韩国产| 国产欧美一区二区色老头| 欧美va日韩va| 亚洲日本在线视频观看| 国产精品亚洲综合色区韩国| 久久久亚洲一区| 在线看片欧美| 欧美激情中文字幕在线| 久久综合久久88| 亚洲区免费影片| 麻豆久久婷婷| 国产精品盗摄久久久| 中文在线一区| 欧美日韩一级黄| 欧美一区二区三区久久精品茉莉花| 欧美日韩成人精品| 欧美视频在线观看| 欧美成人一区二区三区| 久久久久免费视频|