日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做NEKN96、代寫c/c++,Java程序設計
代做NEKN96、代寫c/c++,Java程序設計

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Homework Assignment 1
NEKN96
Guidelines
1. Upload the HWA in .zip format to Canvas before the 2nd of October, 23:59, and only
upload one HWA for each group. The .zip ffle should contain two parts:
- A report in .pdf format, which will be corrected.
- The code you used to create the output/estimates for the report. The code itself will
not be graded/corrected and is only required to conffrm your work. The easiest is to add
the whole project folder you used to the zip ffle.
1 However, if you have used online tools,
sharing a link to your work is also ffne.
2
2. The assignment should be done in groups of 3-4 people, pick groups at
Canvas → People → Groups.
3
3. Double-check that each group member’s name and ID number are included in the .pdf ffle.
4. To receive your ffnal grade on the course, a PASS is required on this HWA.
- If a revision is required, the comments must be addressed, and an updated version should
be mailed to ioannis.tzoumas@nek.lu.se. However, you are only guaranteed an additional
evaluation of the assignment in connection to an examination period.
4
You will have a lot of ffexibility in how you want to solve each part of the assignment, and all things
that are required to get a PASS are denoted in bullet points:

Beware, some things require a lot of work, but you should still only include the ffnal table or ffgure
and not all intermediary steps. If uncertain, add a sentence or two about how you reached your
conclusions, but do not add supplementary material. Only include the tables/ffgures explicitly asked
for in the bullet points.
Good Luck!
1Before uploading the code, copy-paste the project folder to a new directory and try to re-run it. Does it still work?
2Make sure the repository/link is public/working before sharing it.
3Rare exceptions can be made if required. 
4Next is the retake on December 12th, 2024.
1NEKN96
Assignment
Our goal is to put into practice the separation of population vs. sample using a linear regression
model. This hands-on approach will allow us to generate a sample from a known Population Regression
Function (PRF) and observe how breakages of the Gauss-Markov assumptions can affect our sample
estimates.
We will assume that the PRF is:
Y = α + β1X1 + β2X2 + β3X3 + ε (1)
However, to break the assumptions, we need to add:
A0: Non-linearities
A2: Heteroscedasticity
A4: Endogeneity
A7: Non-normality in a small sample
A3 autocorrelation will be covered in HWA2, time-series modelling.
Q1 - All Assumptions Fulfflled
Let’s generate a ”correct” linear regression model. Generate a PRF with the parameters:
α = 0.7, β1 = −1, β2 = 2, β3 = 0.5, ε ∼ N(0, 4), Xi
 iid∼ N(0, 1). (2)
The example code is also available in Canvas
Setup Parameters
n = 30
p = 3
beta = [-1, 2, 0.5]
alpha = 0.7
Simulate X and Y, using normally distributed errors
5
np. random . seed ( seed =96)
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
y = alpha + X @ beta + eps
Run the correctly speciffed linear regression model
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
ˆ Add a well-formatted summary table
ˆ Interpret the estimate of βˆ
2 and the R2
.
5
Important: The np.random.seed() will ensure that we all get the same result. In other words, ensure that we are
using the ”correct” seed and that we don’t generate anything else ”random” before this simulation.
2NEKN96
ˆ In a paragraph, discuss if the estimates are consistent with the population regression function.
Why, why not?
ˆ Re-run the model, increasing the sample size to n = 10000. In a paragraph, explain what happens
to the parameter estimates, and why doesn’t R2 get closer and closer to 1 as n increases?
Q2 - Endogeneity
What if we (wrongly) assume that the PRF is:
Y = α + β1X1 + β2X2 + ε (3)
Use the same seed and setup as in Q1, and now estimate both the ”correct” and the ”wrong” model:
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
result_OLS_endog = OLS ( endog =y, exog = add_constant (X[:,0:2 ])). fit ()
result_OLS_endog . summary ()
ˆ Shouldn’t this imply an omitted variable bias? Show mathematically why it won’t be a problem
in this speciffc setup (see lecture notes ”Part 2 - Linear Regression”).
Q3 - Non-Normality and Non-Linearity
Let’s simulate a sample of n = 3000, keeping the same parameters, but adding kurtosis and skewness
to the error terms:
6
n = 3000
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
eps_KU = np. sign ( eps) * eps **2
eps_SKandKU_tmp = np. where ( eps_KU > 0, eps_KU , eps_KU *2)
eps_SKandKU = eps_SKandKU_tmp - np. mean ( eps_SKandKU_tmp )
Now make the dependent variable into a non-linear relationship
y_exp = np.exp( alpha + X @ beta + eps_SKandKU )
ˆ Create three ffgures:
1. Scatterplot of y exp against x 1
2. Scatterplot of ln(y exp) against x 1
3. plt.plot(eps SKandKU)
The ffgure(s) should have a descriptive caption, and all labels and titles should be clear to the
reader.
Estimate two linear regression models:
6The manual addition of kurtosis and skewness will make E [ε] ̸= 0, so we need to remove the average from the errors
to ensure that the exogeneity assumption is still fulfflled.
3NEKN96
res_OLS_nonLinear = OLS( endog =y_exp , exog = add_constant (X)). fit ()
res_OLS_transformed = OLS ( endog =np.log ( y_exp ), exog = add_constant (X)). fit ()
ˆ Add the regression tables of the non-transformed and transformed regressions
ˆ In a paragraph, does the transformed model fft the population regression function?
Finally, re-run the simulations and transformed estimation with a small sample, n = 30
ˆ Add the regression table of the transformed small-sample estimate
ˆ Now, re-do this estimate several times
7 and observe how the parameter estimates behave. Do
the non-normal errors seem to be a problem in this spot?
Hint: Do the parameters seem centered around the population values? Do we reject H0 : βi = 0?
ˆ In a paragraph, discuss why assuming a non-normal distribution makes it hard to ffnd the
distributional form under a TRUE null hypothesis, H0 ⇒ Distribution?
Hint: Why is the central limit theorem key for most inferences?
Q4 - Heteroscedasticity
Suggest a way to create heteroscedasticity in the population regression function.
8
ˆ Write down the updated population regression function in mathematical notation
ˆ Estimate the regression function assuming homoscedasticity (as usual)
ˆ Adjust the standard errors using a Heteroscedastic Autocorrelated Consistent (HAC) estimator
(clearly state which HAC estimator you use)
ˆ Add the tables of both the unadjusted and adjusted estimates
ˆ In a paragraph, discuss if the HAC adjustment to the standard errors makes sense given the
way you created the heteroscedasticity. Did the HAC adjustment seem to ffx the problem?
Hint: Bias? Efffcient?
7Using a random seed for each estimate.
8Tip: Double-check by simulating the model and plotting the residuals against one of the regressors. Does it look
heteroscedastic?


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:ITMF7.120代寫、代做Python編程設計
  • 下一篇:代做COMP 412、代寫python設計編程
  • ·CRICOS編程代做、代寫Java程序設計
  • ·MDSB22代做、代寫C++,Java程序設計
  • ·代做Electric Vehicle Adoption Tools 、代寫Java程序設計
  • ·代做INFO90001、代寫c/c++,Java程序設計
  • · COMP1711代寫、代做C++,Java程序設計
  • ·GameStonk Share Trading代做、java程序設計代寫
  • ·CSIT213代做、代寫Java程序設計
  • ·CHC5223代做、java程序設計代寫
  • ·代做INFS 2042、Java程序設計代寫
  • ·代寫CPT206、Java程序設計代做
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲国产成人精品视频| 一区在线免费| 国产一区二区三区丝袜| 久久久www免费人成黑人精品| 国产亚洲欧美另类一区二区三区| 亚洲欧美日韩一区二区在线| 亚洲人成网站精品片在线观看| 欧美精品网站| 美女视频黄免费的久久| 亚洲性夜色噜噜噜7777| 久久久99精品免费观看不卡| 欧美一级久久久久久久大片| 国产精品成人在线观看| 亚洲精品免费观看| 欧美日韩中文字幕在线视频| 欧美视频导航| 欧美日韩一区二区三区在线视频| 精东粉嫩av免费一区二区三区| 欧美区国产区| 欧美日韩www| 国产精品免费小视频| 亚洲高清不卡在线观看| 亚洲国产日韩欧美在线动漫| 亚洲免费观看高清在线观看| 亚洲韩国日本中文字幕| 在线亚洲美日韩| 久久综合中文字幕| 国产精品亚洲第一区在线暖暖韩国| 亚洲女人小视频在线观看| 国产日韩综合一区二区性色av| 久久婷婷国产综合精品青草| 国产视频精品网| 亚洲激情午夜| 亚洲国产精品久久久久久女王| 国产精品免费区二区三区观看| 亚洲麻豆视频| 亚洲国产成人91精品| 久久婷婷亚洲| 亚洲国产裸拍裸体视频在线观看乱了中文| 国产视频一区二区在线观看| 久久成人久久爱| 久久久亚洲欧洲日产国码αv| 美女视频黄 久久| 尤物在线观看一区| 国产精品视频观看| 久久国产日本精品| 亚洲在线一区| 91久久中文| 欧美一区二区三区男人的天堂| 一本色道久久综合精品竹菊| 一本色道久久综合狠狠躁篇的优点| 在线日韩电影| 国产精一区二区三区| 亚洲激情二区| 亚洲精选91| 国产精品久久久久国产a级| 国产中文一区二区| 欧美福利在线| 亚洲天堂网站在线观看视频| 国产视频亚洲| 亚洲精品一区在线| 影音先锋中文字幕一区二区| 亚洲免费在线电影| 韩国女主播一区| 久久久久一区二区三区| 亚洲第一精品影视| 亚洲精品久久久久中文字幕欢迎你| 国产精品三级久久久久久电影| 亚洲国产欧美在线| 欧美视频在线观看一区二区| 欧美日一区二区在线观看| 欧美激情第10页| 亚洲一区二区精品在线| 午夜亚洲激情| 国产精品毛片| 国产一区视频在线看| 国产精品普通话对白| 性色av一区二区怡红| 国产伦一区二区三区色一情| 在线高清一区| 欧美精品自拍偷拍动漫精品| 亚洲在线观看视频| 国产精品v亚洲精品v日韩精品| 日韩视频中午一区| 欧美精品色一区二区三区| 性色av一区二区怡红| 亚洲人成在线播放| 亚洲片在线资源| 在线成人激情视频| 韩国一区二区在线观看| 麻豆久久婷婷| 国产乱码精品1区2区3区| 欧美一区成人| 欧美日韩国产麻豆| 欧美性大战久久久久| 麻豆91精品91久久久的内涵| 欧美在线观看天堂一区二区三区| 久久色在线播放| 欧美激情aⅴ一区二区三区| 欧美视频国产精品| 快播亚洲色图| 一本色道久久综合亚洲精品不卡| 亚洲欧洲日夜超级视频| 伊人精品成人久久综合软件| 国产综合欧美在线看| 欧美性色aⅴ视频一区日韩精品| 国产精品豆花视频| 免费日韩av| 国产性做久久久久久| 99精品国产高清一区二区| 久久一区二区视频| 欧美日韩国产不卡在线看| 欧美诱惑福利视频| 欧美不卡视频一区| 亚洲激情av| 亚洲国产小视频| 久久久www| 国产中文一区二区三区| 免费看av成人| 欧美精品久久99久久在免费线| 欧美精品在线观看| 亚洲国产三级网| 一区二区在线观看av| 欧美日韩一区二区国产| 午夜精品免费| 亚洲国产精品一区二区尤物区| 香蕉免费一区二区三区在线观看| 国产日韩欧美日韩| 久久伊人免费视频| 欧美一区二区视频免费观看| 欧美aa国产视频| 麻豆freexxxx性91精品| 嫩模写真一区二区三区三州| 日韩视频免费观看高清在线视频| 亚洲精品综合| 性欧美激情精品| 久久久久www| 欧美色图天堂网| 欧美日韩在线一二三| 欧美在线一级视频| 国产精品久久久久久久久久免费看| 一区二区三区精品国产| 国产精品国产福利国产秒拍| 在线视频精品一| 一本色道久久综合亚洲精品不| 欧美日韩一区二区欧美激情| 午夜精品成人在线视频| 精品成人免费| 欧美日本簧片| 在线亚洲欧美专区二区| 亚洲国产精品传媒在线观看| 亚洲欧洲日韩综合二区| 国产精品天美传媒入口| 亚洲六月丁香色婷婷综合久久| 欧美成人精品在线观看| 在线观看视频免费一区二区三区| 欧美日韩国内| 国产精品视屏| 亚洲欧美制服另类日韩| 国产最新精品精品你懂的| 亚洲第一精品电影| 久久国产精品久久国产精品| 韩国av一区二区三区四区| 国产精品对白刺激久久久|