日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做NEKN96、代寫c/c++,Java程序設計
代做NEKN96、代寫c/c++,Java程序設計

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Homework Assignment 1
NEKN96
Guidelines
1. Upload the HWA in .zip format to Canvas before the 2nd of October, 23:59, and only
upload one HWA for each group. The .zip ffle should contain two parts:
- A report in .pdf format, which will be corrected.
- The code you used to create the output/estimates for the report. The code itself will
not be graded/corrected and is only required to conffrm your work. The easiest is to add
the whole project folder you used to the zip ffle.
1 However, if you have used online tools,
sharing a link to your work is also ffne.
2
2. The assignment should be done in groups of 3-4 people, pick groups at
Canvas → People → Groups.
3
3. Double-check that each group member’s name and ID number are included in the .pdf ffle.
4. To receive your ffnal grade on the course, a PASS is required on this HWA.
- If a revision is required, the comments must be addressed, and an updated version should
be mailed to ioannis.tzoumas@nek.lu.se. However, you are only guaranteed an additional
evaluation of the assignment in connection to an examination period.
4
You will have a lot of ffexibility in how you want to solve each part of the assignment, and all things
that are required to get a PASS are denoted in bullet points:

Beware, some things require a lot of work, but you should still only include the ffnal table or ffgure
and not all intermediary steps. If uncertain, add a sentence or two about how you reached your
conclusions, but do not add supplementary material. Only include the tables/ffgures explicitly asked
for in the bullet points.
Good Luck!
1Before uploading the code, copy-paste the project folder to a new directory and try to re-run it. Does it still work?
2Make sure the repository/link is public/working before sharing it.
3Rare exceptions can be made if required. 
4Next is the retake on December 12th, 2024.
1NEKN96
Assignment
Our goal is to put into practice the separation of population vs. sample using a linear regression
model. This hands-on approach will allow us to generate a sample from a known Population Regression
Function (PRF) and observe how breakages of the Gauss-Markov assumptions can affect our sample
estimates.
We will assume that the PRF is:
Y = α + β1X1 + β2X2 + β3X3 + ε (1)
However, to break the assumptions, we need to add:
A0: Non-linearities
A2: Heteroscedasticity
A4: Endogeneity
A7: Non-normality in a small sample
A3 autocorrelation will be covered in HWA2, time-series modelling.
Q1 - All Assumptions Fulfflled
Let’s generate a ”correct” linear regression model. Generate a PRF with the parameters:
α = 0.7, β1 = −1, β2 = 2, β3 = 0.5, ε ∼ N(0, 4), Xi
 iid∼ N(0, 1). (2)
The example code is also available in Canvas
Setup Parameters
n = 30
p = 3
beta = [-1, 2, 0.5]
alpha = 0.7
Simulate X and Y, using normally distributed errors
5
np. random . seed ( seed =96)
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
y = alpha + X @ beta + eps
Run the correctly speciffed linear regression model
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
ˆ Add a well-formatted summary table
ˆ Interpret the estimate of βˆ
2 and the R2
.
5
Important: The np.random.seed() will ensure that we all get the same result. In other words, ensure that we are
using the ”correct” seed and that we don’t generate anything else ”random” before this simulation.
2NEKN96
ˆ In a paragraph, discuss if the estimates are consistent with the population regression function.
Why, why not?
ˆ Re-run the model, increasing the sample size to n = 10000. In a paragraph, explain what happens
to the parameter estimates, and why doesn’t R2 get closer and closer to 1 as n increases?
Q2 - Endogeneity
What if we (wrongly) assume that the PRF is:
Y = α + β1X1 + β2X2 + ε (3)
Use the same seed and setup as in Q1, and now estimate both the ”correct” and the ”wrong” model:
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
result_OLS_endog = OLS ( endog =y, exog = add_constant (X[:,0:2 ])). fit ()
result_OLS_endog . summary ()
ˆ Shouldn’t this imply an omitted variable bias? Show mathematically why it won’t be a problem
in this speciffc setup (see lecture notes ”Part 2 - Linear Regression”).
Q3 - Non-Normality and Non-Linearity
Let’s simulate a sample of n = 3000, keeping the same parameters, but adding kurtosis and skewness
to the error terms:
6
n = 3000
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
eps_KU = np. sign ( eps) * eps **2
eps_SKandKU_tmp = np. where ( eps_KU > 0, eps_KU , eps_KU *2)
eps_SKandKU = eps_SKandKU_tmp - np. mean ( eps_SKandKU_tmp )
Now make the dependent variable into a non-linear relationship
y_exp = np.exp( alpha + X @ beta + eps_SKandKU )
ˆ Create three ffgures:
1. Scatterplot of y exp against x 1
2. Scatterplot of ln(y exp) against x 1
3. plt.plot(eps SKandKU)
The ffgure(s) should have a descriptive caption, and all labels and titles should be clear to the
reader.
Estimate two linear regression models:
6The manual addition of kurtosis and skewness will make E [ε] ̸= 0, so we need to remove the average from the errors
to ensure that the exogeneity assumption is still fulfflled.
3NEKN96
res_OLS_nonLinear = OLS( endog =y_exp , exog = add_constant (X)). fit ()
res_OLS_transformed = OLS ( endog =np.log ( y_exp ), exog = add_constant (X)). fit ()
ˆ Add the regression tables of the non-transformed and transformed regressions
ˆ In a paragraph, does the transformed model fft the population regression function?
Finally, re-run the simulations and transformed estimation with a small sample, n = 30
ˆ Add the regression table of the transformed small-sample estimate
ˆ Now, re-do this estimate several times
7 and observe how the parameter estimates behave. Do
the non-normal errors seem to be a problem in this spot?
Hint: Do the parameters seem centered around the population values? Do we reject H0 : βi = 0?
ˆ In a paragraph, discuss why assuming a non-normal distribution makes it hard to ffnd the
distributional form under a TRUE null hypothesis, H0 ⇒ Distribution?
Hint: Why is the central limit theorem key for most inferences?
Q4 - Heteroscedasticity
Suggest a way to create heteroscedasticity in the population regression function.
8
ˆ Write down the updated population regression function in mathematical notation
ˆ Estimate the regression function assuming homoscedasticity (as usual)
ˆ Adjust the standard errors using a Heteroscedastic Autocorrelated Consistent (HAC) estimator
(clearly state which HAC estimator you use)
ˆ Add the tables of both the unadjusted and adjusted estimates
ˆ In a paragraph, discuss if the HAC adjustment to the standard errors makes sense given the
way you created the heteroscedasticity. Did the HAC adjustment seem to ffx the problem?
Hint: Bias? Efffcient?
7Using a random seed for each estimate.
8Tip: Double-check by simulating the model and plotting the residuals against one of the regressors. Does it look
heteroscedastic?


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:ITMF7.120代寫、代做Python編程設計
  • 下一篇:代做COMP 412、代寫python設計編程
  • ·CRICOS編程代做、代寫Java程序設計
  • ·MDSB22代做、代寫C++,Java程序設計
  • ·代做Electric Vehicle Adoption Tools 、代寫Java程序設計
  • ·代做INFO90001、代寫c/c++,Java程序設計
  • · COMP1711代寫、代做C++,Java程序設計
  • ·GameStonk Share Trading代做、java程序設計代寫
  • ·CSIT213代做、代寫Java程序設計
  • ·CHC5223代做、java程序設計代寫
  • ·代做INFS 2042、Java程序設計代寫
  • ·代寫CPT206、Java程序設計代做
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        老司机精品视频一区二区三区| 一本色道久久综合亚洲91| 亚洲欧美色婷婷| 久久久亚洲高清| 狠狠久久亚洲欧美专区| 欧美视频中文一区二区三区在线观看| 久久国内精品视频| 欧美午夜美女看片| 亚洲综合成人在线| 国外成人免费视频| 亚洲午夜一区| 国产精品狼人久久影院观看方式| 99精品视频免费在线观看| **网站欧美大片在线观看| 欧美主播一区二区三区美女 久久精品人| 久久综合色综合88| 午夜电影亚洲| 艳女tv在线观看国产一区| 亚洲在线成人| 欧美精品二区| 午夜在线视频观看日韩17c| 99视频日韩| 久久综合九九| 在线观看av不卡| 午夜欧美电影在线观看| 国产精品久久久久久久久| 亚洲在线一区二区| 一区二区欧美激情| 欧美精品在线一区二区三区| 亚洲麻豆国产自偷在线| 伊人久久大香线蕉综合热线| 欧美国产欧美亚洲国产日韩mv天天看完整| 国产精品国内视频| 欧美日韩一卡二卡| 欧美日本簧片| 欧美一区观看| 亚洲欧美日韩国产一区二区三区| 日韩视频永久免费观看| 亚洲精品护士| 亚洲精品一区二区在线观看| 亚洲欧洲美洲综合色网| 亚洲主播在线| 亚洲精品久久嫩草网站秘色| 欧美国产日韩在线观看| 欧美区一区二| 亚洲免费在线播放| 久久精品一区二区三区不卡| 在线色欧美三级视频| 久久久久久9999| 欧美日韩精品三区| 亚洲国产欧美久久| 欧美www在线| 欧美激情片在线观看| 国产一区日韩二区欧美三区| 欧美激情亚洲综合一区| 国产精品高清免费在线观看| 国产主播一区二区| 欧美日韩精品免费| 国产精品免费视频xxxx| 在线视频免费在线观看一区二区| 国产精品另类一区| 国产在线不卡| 在线欧美福利| 亚洲精品国精品久久99热一| 麻豆成人精品| 欧美成人精品一区二区| 欧美视频一区| 欧美国产视频在线观看| 欧美黄色大片网站| 欧美日韩高清在线观看| 亚洲一区二区精品在线观看| 欧美成人国产va精品日本一级| 国产精品日韩欧美一区二区| 亚洲成人在线网| 一区二区三区高清在线观看| 美脚丝袜一区二区三区在线观看| 亚洲欧美影音先锋| 欧美女同在线视频| 久久亚洲精品伦理| 国产精品爽爽ⅴa在线观看| 免费观看成人www动漫视频| 久久精品一本| 在线看一区二区| 欧美日韩综合在线免费观看| 国产农村妇女精品| 国产精品乱码一区二区三区| 在线一区二区日韩| 欧美激情精品久久久久久黑人| 亚洲欧洲在线一区| 亚洲国产日韩美| 国产精品日韩欧美一区二区| 国产在线视频不卡二| 久久精品一区二区三区不卡牛牛| 午夜欧美理论片| 中文成人激情娱乐网| 久久精品九九| 免费久久久一本精品久久区| 99精品黄色片免费大全| 国产一区二区你懂的| 一区二区三区黄色| 韩国一区二区三区在线观看| 久久国产主播精品| 欧美a级一区二区| 亚洲精品日韩在线| 在线中文字幕一区| 欧美精品午夜| 欧美成人综合一区| 亚洲精选视频免费看| 午夜宅男久久久| 亚洲日本精品国产第一区| 国产美女精品免费电影| 一本色道久久加勒比精品| 亚欧成人在线| 久久精品九九| 欧美美女bbbb| 国产精品一二三四区| 欧美亚州在线观看| 亚洲高清一二三区| 亚洲视频自拍偷拍| 中日韩午夜理伦电影免费| 国产精品劲爆视频| 久久久亚洲综合| 亚洲免费一级电影| 欧美人与性动交a欧美精品| 亚洲国产精品一区在线观看不卡| 国产亚洲欧洲| 国产精品呻吟| 在线免费观看日本一区| 亚洲婷婷免费| 欧美一区激情| 免费在线观看精品| 香蕉久久夜色精品国产| 在线视频你懂得一区二区三区| 国产区欧美区日韩区| 性欧美大战久久久久久久免费观看| 浪潮色综合久久天堂| 国产日韩一区在线| 亚洲精品久久久久久久久久久久久| 激情校园亚洲| 91久久久久久久久久久久久| 欧美精品久久一区二区| 欧美视频精品在线| 国产日韩欧美中文| 久久国产精品色婷婷| 欧美高清视频| 欧美成人亚洲| 欧美激情一区二区三区成人| 午夜精品久久久久久久久久久| 99精品欧美一区二区三区| 国产精品极品美女粉嫩高清在线| 亚洲欧美国产精品桃花| 国产精品久久久久秋霞鲁丝| 欧美亚洲免费电影| 亚洲午夜精品在线| 欧美精品亚洲一区二区在线播放| 国产精自产拍久久久久久| 亚洲人成啪啪网站| 亚洲一区三区视频在线观看| 日韩亚洲国产欧美| 久久精品免费观看| 亚洲在线一区| 亚洲美女一区| 韩国av一区二区| 欧美另类99xxxxx|