日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CITS1401代寫、代做Python編程語言
CITS1401代寫、代做Python編程語言

時間:2024-09-14  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 1 of 9 
 
Department of Computer Science and Soffware Engineering 
The University of Western Australia 
CITS1401 
Computational Thinking with Python 
Project 1, Semester 2, 2024 
(Individual project) 
 
Submission deadline: 23:59 PM, 13 September 2024. 
Total Marks: 30 
 
Project Submission Guidelines: 
 
You should construct a Python 3 program containing your solution to the given problem and 
submit your program electronically on Moodle. The name of the file containing your code 
should be your student ID e.g. 12345678.py. No other method of submission is allowed. Please 
note that this is an individual project. 
• Your program will be automatically run on Moodle for sample test cases provided in 
the project sheet if you click the “check” link. However, this does not test all required 
criteria and your submission will be thoroughly tested manually for grading purposes 
after the due date. Remember you need to submit the program as a single file and copypaste
 the same program in the provided text box. 
• You have only one attempt to submit, so don’t submit until you are satisfied with your 
attempt. 
• All open submissions at the time of the deadline will be automatically submitted. There 
is no way in the system to open/modify/reverse your submission. 
• You must submit your project before the deadline listed above. Following UWA policy, 
a late penalty of 5% will be deducted for each day (or part day) i.e., 24 hours after the 
deadline, that the assignment is submitted. 
• No submissions will be allowed after 7 days following the deadline except approved 
special consideration cases. 
You are expected to have read and understood the University's guidelines on academic conduct. 
In accordance with this policy, you may discuss with other students the general principles 
required to understand this project, but the work you submit must be the result of your own 
effort. Plagiarism detection, and other systems for detecting potential malpractice, will CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 2 of 9 
 
therefore be used. Besides, if what you submit is not your own work then you will have learnt 
little and will therefore, likely, fail the final exam. 
 
Project Overview: 
 
In the rapidly expanding world of e-commerce, platforms like Amazon provide vast amounts 
of data that can offer valuable insights into various aspects of product performance. This project 
aims to analyze Amazon data for different products within specific categories, utilizing key 
parameters such as product ID, product name, category, discounted price, actual price, ratings, 
rating count etc., The data set includes a diverse range of categories, each with multiple 
products, allowing us to identify trends and patterns specific to each category. 
 
You are required to write a Python 3 program that will read two different files: a CSV file and 
a TXT file. Your program will perform four different tasks outlined below. While the CSV file 
is required to solve all the tasks (Tasks**4), the TXT file is only required for the last task (Task 
4). 
After reading the CSV file, your program is required to complete the following: 
• Task 1: Identify Extreme Discount Prices 
Find the product ID with the highest discounted price and the product ID with the 
lowest discounted price for a specific category. 
• Task 2: Summarize Price Distribution 
Provide a summary of the ‘actual price’ distribution i.e., mean, median and mean 
absolute deviation of products for a specific category, considering only the products 
with a rating count higher than 1000. 
• Task 3: Calculate Standard Deviation of Discounted Percentages 
Calculate the standard deviation of the discounted percentages for products with rating 
in the range 3.3≤rating≤4.3, for each category. 
• Task 4: Correlate Sales Data 
Find the correlations between the sales of the products identified in Task 1 (products 
with highest and lowest discounted prices for a specific category). 
Steps: 
o Read the TXT file which contains the sales data for several years, such as 1998-
2021. Each line lists product IDs and the units sold for that year. If a product ID 
is not mentioned in a line, it means zero units sold for that year. CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 3 of 9 
 
o Create two lists, one for the sales of the product with the highest discounted 
price and another for the sales of the product with the lowest discounted price 
identified in Task 1. 
o Process each line of the TXT file to determine the number of units sold each 
year. 
o Each list should have one entry per year, with the total number of entries 
matching the number of lines in the TXT file. 
Finally, calculate the correlation coefficient between the two sales lists. 
 
Requirements: 
 
1) You are not allowed to import any external or internal module in python. While use of 
many of these modules, e.g., csv or math is a perfectly sensible thing to do in production 
setting, it takes away much of the point of different aspects of the project, which is about getting 
practice opening text files, processing text file data, and use of basic Python structures, in this 
case lists and loops. 
2) Ensure your program does NOT call the input() function at any time. Calling the 
input() function will cause your program to hang, waiting for input that automated testing 
system will not provide (in fact, what will happen is that if the marking program detects the 
call(s), it will not test your code at all which may result in zero grade). 
3) Your program should also not call print()function at any time except for the case of 
graceful termination (if needed). If your program encounters an error state and exits gracefully, 
it should return a correlation/standard deviation/mean/median value of zero and print an 
appropriate error message. At no point should you print the program’s outputs or provide a 
printout of the program’s progress in calculating such outputs. Outputs should be returned by 
the program instead. 
4) Do not assume that the input file names will end in .csv or .txt. File name suffixes such 
as .csv and .txt are not mandatory in systems other than Microsoft Windows. Do not 
enforce within your program that the file must end with a specific extension, nor should you 
attempt to add an extension to the provided file name. Doing so can result in loss of marks. 
 
 
 
 CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 4 of 9 
 
Input: 
 
Your program must define the function main with the following syntax: 
def main(CSVfile, TXTfile, category): 
The input arguments for this function are: 
1. CSVfile: The name of the CSV file (as string) containing the record of the Amazon’s 
product data. 
2. TXTfile: The name of the TXT file (as string) containing the record of Amazon’s 
product sales. 
3. category: A string representing the category to be analysed. The Amazon’s product 
data contains multiple categories. 
Output: 
 
The following four outputs are expected: 
i) OP1= [Product ID1, Product ID2]: A list that contains two items, ID of 
the product with the highest discounted price, ID of the product with the lowest 
discounted price. Your output should be stored in a list in the following order: 
[highest discounted price product ID, lowest discounted price product ID] 
For example: ['b07vtfn6hm', 'b08y5kxr6z'] 
Note: If multiple products have the same highest discounted price, select the product 
ID that comes first when the product IDs are sorted in ascending order. Apply the same 
rule for the lowest discounted price. 
 
ii) OP2= [mean, median, mean absolute deviation]: A list containing 
three statistical measures i.e., mean, median, and mean absolute deviation of the actual 
price for products within a given category, considering only those products with a 
rating count higher than 1000. The output should be stored in a list in the following 
order: 
[mean, median, mean absolute deviation] 
For example: [2018.8, 800.0, 21**.48] 
 
 
 CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 5 of 9 
 
iii) OP3= [STD1, STD2, ..., STDN]: A list containing the standard deviation of 
the discounted percentages for products within the rating in the range 3.3 to 4.3 (3.3 ≤ 
rating ≤ 4.3) of each category. The output should be sorted in the descending order. The 
expected output is a list with values sorted in the descending order. 
For example: [0.297, 0.2654, 0.2311, 0.198, 0.1701, 0.1596, 
0.0071] 
 
iv) OP4= Correlation: A numeric value representing the correlation between the 
sales of a product with the highest discounted price and the lowest discounted price 
found in the task 1 above. The expected output is a single float value. 
For example: -0.02** 
 
All returned numeric outputs (both in lists and individual) must contain values rounded to four 
decimal places (if required to be rounded off). Do not round the values during calculations. 
Instead, round them only at the time when you save them into the final output variables. 
 
Examples: 
Download Amazon_products.csv and Amazon_sales.txt from the folder of Project 
1 on LMS or Moodle. An example of how you can call your program from the Python shell 
(and examine the results it returns) is provided below: 
 
>>>OP1, OP2, OP3, OP4= main('Amazon_products.csv', 
'Amazon_sales.txt', 'Computers&Accessories') 
 
>>>OP1 
['b07vtfn6hm', 'b08y5kxr6z'] 
 
>>> OP2 
[2018.8, 800.0, 21**.48] 
 
>>> OP3 
[0.297, 0.2654, 0.2311, 0.198, 0.1701, 0.1596, 0.0071] 
 
>>> OP4 
-0.02** 
 
 
 CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 6 of 9 
 
Assumptions: 
Your program can assume the following: 
1. Anything that is meant to be string (e.g., header) will be a string, and anything that is 
meant to be numeric will be numeric. 
2. All string data in the CSV file and TXT file is case-insensitive, which means 
“Computers&accessories” is same as “Computers&Accessories” or “B08Y5KXR6Z” is 
same as “b08y5kxr6z”. Your program needs to handle the situation to consider both 
strings to be the same. 
3. In the CSV file, the order of columns in each row will follow the order of the headings 
provided in the first row. However, rows can be in random order except the first row 
which contains the headings. 
4. No data will be missing in the CSV file; however, values can be zero and must be 
accounted for when calculating averages and standard deviations. 
[In case any part of the calculation cannot be performed due to zero values or other 
boundary conditions, do a graceful termination by printing an error message and 
returning a zero value (for numbers), None for (string) or empty list depending on the 
expected outcome. Your program must not crash.] 
5. Each line in the TXT file will correspond to a unique year, with no repetition of years. 
The number of years may vary, so avoid hard coding. 
6. All the product IDs in the CSV file will be unique. 
7. The main() will always be provided with valid input parameters. 
8. The necessary formulas are provided at the end of this document. 
 
Important grading instruction: 
 
Note that you have not been asked to write specific functions. The task has been left to you. 
However, it is essential that your program defines the top-level function main(CSVfile, 
TXTfile, category) (commonly referred to as ‘main()’ in the project documents to 
save space when writing it. Note that when main() is written it still implies that it is defined 
with its three input arguments). The idea is that within main(), the program calls the other 
functions. (Of course, these functions may then call further functions.) This is important 
because when your code is tested on Moodle, the testing program will call your main() 
function. So, if you fail to define main(), the testing program will not be able to test your CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 7 of 9 
 
code and your submission will be graded zero. Don’t forget the submission guidelines provided 
at the start of this document. 
 
Marking rubric: 
 
Your program will be marked out of 30 (later scaled to be out of 15% of the final mark). 
24 out of 30 marks will be awarded automatically based on how well your program completes 
a number of tests, reflecting normal use of the program, and how the program handles various 
states including, but not limited to, different numbers of rows in the input file and / or any error 
states. You need to think creatively what your program may face. Your submission will be 
graded by data files other than the provided data file. Therefore, you need to be creative to 
investigate corner or worst cases. I have provided few guidelines from ACS Accreditation 
manual at the end of the project sheet which will help you to understand the expectations. 
 
6 out of 30 marks will be awarded on style (3/6) “the code is clear to read” and efficiency (3/6) 
“your program is well constructed and run efficiently”. For style, think about use of comments, 
sensible variable names, your name at the top of the program, student ID, etc. (Please watch 
the lectures where this is discussed). 
 
Style Rubric: 

 
 Gibberish, impossible to understand 
1 Style is really poor or fair. 
 2 
 
 Style is good or very good, with small lapses. 
 3 Excellent style, really easy to read and follow 
 
Your program will be traversing text files of various sizes (possibly including large csv files) 
so you need to minimise the number of times your program looks at the same data items. 
Efficiency rubric: 
0 Code too complicated to judge efficiency or wrong problem tackled 
1 Very poor efficiency, additional loops, inappropriate use of readline() 
2 Acceptable or good efficiency with some lapses 
3 Excellent efficiency, should have no problem on large files, etc. 
 
Automated testing is being used so that all submitted programs are being tested the same way. 
Sometimes it happens that there is one mistake in the program that means that no tests are 
passed. If the marker can spot the cause and fix it readily, then they are allowed to do that and 
your - now fixed - program will score whatever it scores from the tests, minus 4 marks, because CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 8 of 9 
 
other students will not have had the benefit of marker intervention. Still, that's way better than 
getting zero. On the other hand, if the bug is hard to fix, the marker needs to move on to other 
submissions. 
Extract from Australian Computing Society Accreditation manual 2019: 
As per Seoul Accord section D, a complex computing problem will normally have some or 
all the following criteria: 
 
- involves wide-ranging or conflicting technical, computing, and other issues. 
- has no obvious solution and requires conceptual thinking and innovative analysis to 
formulate suitable abstract models. 
- a solution requires the use of in-depth computing or domain knowledge and an 
analytical approach that is based on well-founded principles. 
- involves infrequently encountered issues. 
- are outside problems encompassed by standards and standard practice for professional 
computing. 
- involves diverse groups of stakeholders with widely varying needs. 
- has significant consequences in a range of contexts. 
- is a high-level problem possibly including many component parts or sub-problems. 
- identification of a requirement or the cause of a problem is ill defined or unknown. 
 
Necessary formulas: 
i) Median 
 
Mathematically, median is represented as: 
X = ordered list of values in the data set. 
n = number of values in the data set. 
 
ii) Mean absolute Deviation 
 
MD = average value of X 
n = number of data values 
xi = data values in X 
 
 CITS1401 Computational Thinking with Python 
Project 1, Semester 2, 2024 
 
Page 9 of 9 
 
iii) Standard deviation: 
 
Mathematically, standard deviation is represented as: 𝑖𝑖=1
Ү**;Ү**; − 1 
 
where are observed value in sample data. w**9;w**9;**; is the mean value of observations 
and      is the number of sample observations. 
 
iv) Correlation coefficient: 
 
Mathematical formula to calculate correlation is as follows: 
where          and          are the values of sales in each year (mentioned in the sales.txt file) for the 
product with the highest and the lowest discounted price respectively. w**9;w**9;**; is the mean of sales of 
product with the highest discounted price and 𝑦𝑦  is the mean of the sales of the product with the 
lowest discounted price. 
 
 
Note: Any updates regarding the project will be posted on Moodle help forum. 
 
 請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp










 

掃一掃在手機打開當前頁
  • 上一篇:CMP5321代做、代寫Python程序語言
  • 下一篇:代寫CDS540程序、代做Python/Java編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美视频一区二区三区| 欧美一区二区视频在线| 在线免费精品视频| 欧美美女喷水视频| 欧美一区二区视频在线| 欧美激情精品久久久久久黑人| 欧美成人综合网站| 亚洲一区二区免费在线| 久久亚洲风情| 亚洲欧洲一区二区在线播放| 国产欧美日韩精品在线| 好吊一区二区三区| 蜜桃av噜噜一区二区三区| 欧美精品电影| 欧美视频精品在线观看| 在线视频国产日韩| 一本高清dvd不卡在线观看| 欧美日韩裸体免费视频| 亚洲视频一起| 99精品99久久久久久宅男| 亚洲欧美在线一区| 久久久免费av| 一区二区三区波多野结衣在线观看| 欧美四级在线| 亚洲精品久久嫩草网站秘色| 欧美一级二级三级蜜桃| 亚洲自拍偷拍网址| 国产精品久久久久久久一区探花| 国产精品久久久久aaaa九色| 亚洲精品中文字幕在线| 国产精品s色| 激情五月综合色婷婷一区二区| 国产精品美女www爽爽爽| 久久精品女人天堂| 亚洲国产欧美一区| 香蕉久久久久久久av网站| 在线观看亚洲精品| 欧美激情区在线播放| 久久国产精品一区二区三区| 欧美视频中文字幕在线| 国产亚洲精品福利| 国内精品一区二区| 欧美va亚洲va日韩∨a综合色| 久久伊伊香蕉| 久久在线免费观看视频| 欧美另类极品videosbest最新版本| 99综合精品| 国产精品一区二区久久久久| 欧美色精品在线视频| 亚洲国产精品电影在线观看| 免费在线欧美黄色| 狠狠色综合一区二区| 狠狠久久婷婷| 国产精品区免费视频| 日韩亚洲一区二区| 久久综合一区二区三区| 亚洲一区二区三区精品在线观看| 99精品国产在热久久下载| 亚洲欧洲一区二区在线观看| 亚欧成人在线| 国产精品日韩欧美一区二区三区| 日韩视频久久| 欧美高清视频在线播放| 一本色道88久久加勒比精品| 亚洲人午夜精品免费| 欧美精品色综合| 国产精品稀缺呦系列在线| 性欧美大战久久久久久久久| 亚洲综合久久久久| 亚洲女性裸体视频| 欧美精品v日韩精品v国产精品| 亚洲人成网站在线观看播放| 欧美性大战xxxxx久久久| 在线欧美影院| 亚洲黄色大片| 91久久精品一区| 精品51国产黑色丝袜高跟鞋| 欧美www视频在线观看| 亚洲一区区二区| 久久五月婷婷丁香社区| 亚洲精品视频在线观看网站| 亚洲精品一级| 欧美一区视频| 久久精品免费| 午夜精品久久久久久| 精品成人国产在线观看男人呻吟| 欧美日韩三级视频| 女人色偷偷aa久久天堂| 久久午夜电影网| 99成人精品| 免费欧美日韩国产三级电影| 欧美一区二区在线观看| 亚洲精品视频在线观看免费| 久久久久久久久久久一区| 免费视频一区| 国产精品超碰97尤物18| 亚洲卡通欧美制服中文| 一区二区三区欧美激情| 亚洲视频一区二区免费在线观看| 亚洲图片激情小说| 黑人极品videos精品欧美裸| 欧美影院午夜播放| 国产精品人人做人人爽| 欧美sm重口味系列视频在线观看| 欧美三区在线视频| 午夜欧美大尺度福利影院在线看| 欧美福利视频在线| 亚洲一区二区三区免费在线观看| 久久精品动漫| 日韩午夜在线观看视频| 午夜精品久久久久久久久久久| 久久成人资源| 美女被久久久| 欧美在线播放| 黄色成人av网| 久久香蕉国产线看观看网| 亚洲愉拍自拍另类高清精品| 欧美视频在线免费| 国产乱肥老妇国产一区二| 欧美一区二区三区免费大片| 亚洲字幕一区二区| 一本久道综合久久精品| 国产精品igao视频网网址不卡日韩| 在线日韩日本国产亚洲| 最新69国产成人精品视频免费| 国产一区二区三区在线观看视频| 国产色产综合色产在线视频| 亚洲电影免费观看高清完整版在线| 久久久国产精彩视频美女艺术照福利| 国产婷婷成人久久av免费高清| 久久午夜电影网| 久久三级福利| 欧美精品日本| 国产精品一区二区在线观看| 欧美一区二区三区免费观看视频| 麻豆freexxxx性91精品| 亚洲国产精品久久精品怡红院| 欧美影院午夜播放| 国产伦精品一区二区三区四区免费| 亚洲男人的天堂在线aⅴ视频| 午夜久久99| 国产精品视屏| 亚洲美女色禁图| 国产日韩精品一区二区浪潮av| 最新国产精品拍自在线播放| 欧美成人免费va影院高清| 99在线精品视频在线观看| 欧美日韩的一区二区| 久久夜精品va视频免费观看| 在线观看一区二区视频| 欧美1区3d| 久久久久综合| 亚洲欧美资源在线| 欧美一区二区免费| 亚洲国产一区二区精品专区| 老妇喷水一区二区三区| 一区二区三区四区五区精品视频| 亚洲欧美国产日韩天堂区| 亚洲欧洲一区二区在线观看| 一二美女精品欧洲| 国产欧美精品一区二区三区介绍| 另类酷文…触手系列精品集v1小说| 欧美日韩久久精品| 欧美日韩免费高清|