日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3007_7059 Artificial Intelligence 3007_7059
代寫3007_7059 Artificial Intelligence 3007_7059

時間:2024-09-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Assignment 2: Artificial Intelligence (3007_7059 Combined)

Assignment 2

The dataset is available here

(https://myuni.adelaide.edu.au/courses/95211/files/14537288/download)

Part 1 Wine Quality Prediction with 1NN (K-d Tree)

Wine experts evaluate the quality of wine based on sensory data. We could also collect the features of wine from objective tests, thus the objective features could be used to predict the expert’s judgment, which is the quality rating of the wine. This could be formed as a supervised learning problem with the objective features as the data features and wine quality rating as the data labels.

In this assignment, we provide objective features obtained from physicochemical statistics for each white wine sample and its corresponding rating provided by wine experts. You are expected to implement the k-d tree (KDT) and use the training set to train your k-d tree, then provide wine quality prediction on the test set by searching the tree

Wine quality rating is measured in the range of 0-9. In our dataset, we only keep the samples for quality ratings 5, 6 and 7. The 11 objective features are listed as follows [1]:

f_acid : fixed acidity

v_acid : volatile acidity

c_acid : citric acid

res_sugar : residual sugar

chlorides : chlorides

fs_dioxide : free sulfur dioxide

ts_dioxide : total sulfur dioxide

density : density

pH : pH

sulphates : sulphates

alcohol : alcohol

Explanation of the Data.

train: The first 11 columns represent the 11 features and the 12th column is the wine quality. A sample is depicted as follows:

f_acid

v_acid

c_acid

res_sugar

chlorides

fs_dioxide

ts_dioxide

density

 

sulphates

alcohol

quality

8.10

0.270

0.41

1.45

0.033

11.0

63.0

0.9**80

2.99

0.56

12.0

5

8.60

0.230

0.40

4.20

0.035

17.0

109.0

0.99**0

3.14

0.53

9.7

5

7.**

0.180

0.74

1.20

0.040

16.0

75.0

0.99200

3.18

0.63

10.8

5

8.30

0.420

0.62

19.25

0.040

41.0

172.0

1.00020

2.98

0.67

9.7

5

6.50

0.310

0.14

7.50

0.044

34.0

133.0

0.99550

3.22

0.50

9.5

5

test: The first 11 columns represent the 11 features and the 12th column is the wine quality. A sample is depicted as follows:

f_acid

v_acid

c_acid

res_sugar

chlorides

fs_dioxide

ts_dioxide

density

pH

sulphates

alcohol

7.0

0.360

0.14

11.60

0.043

35.0

228.0

0.99770

3.13

0.51

8.**0000

6.3

0.270

0.18

7.70

0.048

45.0

186.0

0.99620

3.23

0.**

9.000000

7.2

0.2**

0.20

7.70

0.046

51.0

174.0

0.99582

3.16

0.52

9.500000

7.1

0.140

0.35

1.40

0.039

24.0

128.0

0.99212

2.97

0.68

10.400000

7.6

0.480

0.28

10.40

0.049

57.0

205.0

0.99748

3.24

0.45

9.300000

1.1 1NN (K-d Tree)

From the given training data, our goal is to learn a function that can predict the wine quality rating of a wine sample, based on the objective features. In this assignment, the predictor function will be constructed as a k-d tree. Since the attributes (objective features) are continuously valued, you shall apply the k-d tree algorithm for continuous data, as outlined in Algorithms 1. It is the same as taught in the lecture. Once the tree is constructed, you will search the tree to find the **nearest neighbour of a query point and label the query point. Please refer to the search logic taught in the lecture to write your code for the 1NN search.

 

Algorithm 1 BuildKdTree(P, D) Require: A set of points P of M dimensions and current depth D. 1: if P is empty then 2: return null 3: else if P only has one data point then 4: Create new node node 5: node.d ← d 6: node.val ← val 7: node.point ← current point 8: return node 9: else 10: d ← D mod M 11: val ← Median value along dimension among points in P. 12: Create new node node. 13: node.d ← d 14: node.val ← val 15: node.point ← point at the median along dimension d 16: node.left ← BuildKdTree(points in P for which value at dimension d is less than or equal to val, D+1) 17: node.right ← BuildKdTree(points in P for which value at dimension d is greater than val, D+ 1) 18: return node 19: end if

Note: Sorting is not necessary in some cases depending on your implementation. Please figure out whether your code needs to sort the number first. Also, if you compute the median by yourself, when there’s an even number of points, say [1,2,3,4], the median is 2.5.

 

1.2 Deliverable

Write your k-d tree program in Python 3.6.9 in a file called nn_kdtree.py. Your program must be able to run as follows:

$ python nn_kdtree.py [train] [test] [dimension]

The inputs/options to the program are as follows:

[train] specifies the path to a set of the training data file

[test] specifies the path to a set of testing data file

[dimension] is used to decide which dimension to start the comparison. (Algorithm 1)

Given the inputs, your program must construct a k-d tree (following the prescribed algorithms) using the training data, then predict the quality rating of each of the wine samples in the testing data. Your program must then print to standard output (i.e., the command prompt) the list of predicted wine quality ratings, vertically based on the order in which the testing cases appear in [test].

1.3 Python Libraries

You are allowed to use the Python standard library to write your k-d tree learning program (see https://docs.python.org/3/library/(https://docs.python.org/3/library/) for the components that make up the Python v3.6.9 standard library). In addition to the standard library, you are allowed to use NumPy and Pandas. Note that the marking program will not be able to run your program to completion if other third-party libraries are used. You are NOT allowed to use implemented tree structures from any Python package, otherwise the mark will be set to 0.

1.4 Submission

You must submit your program files on Gradescope. Please use the course code NPD6JD to enroll in the course. Instructions on accessing Gradescope and submitting assignments are provided at https://help.gradescope.com/article/5d3ifaeqi4-student-canvas (https://help.gradescope.com/article/5d3ifaeqi4-student-canvas) .

For undergraduates, please submit your k-d tree program (nn_kdtree.py) to Assignment 2 - UG.

1.5 Expected Run Time

Your program must be able to terminate within 600 seconds on the sample data given.

 

1.6 Debugging Suggestions

Step-by-step debugging by checking intermediate values/results will help you to identify the problems of your code. This function is enabled by most of the Python IDE. If not in your case, you could also print the intermediate values out. You could use sample data or create data in the same format for debugging

1.7 Assessment

Gradescope will compile and run your code on several test problems. If it passes all tests, you will get 15% (undergrads) or 12% (postgrads) of the overall course mark. For undergraduates, bonus marks of 3% will be awarded if Section 2 is completed correctly.

There will be no further manual inspection/grading of your program to award marks based on coding style, commenting, or “amount” of code written.

1.8 Using other source code

You may not use other source code for this assignment. All submitted code must be your own work written from scratch. Only by writing the solution yourself will you fully understand the concept.

1.9 Due date and late submission policy

This assignment is due by 11:59 pm Friday 3 May 2024. If your submission is late, the maximum mark you can obtain will be reduced by 25% per day (or part thereof) past the due date or any extension you are granted.

Part 2 Wine Quality Prediction with Random Forest

For postgraduate students, completing this section will give you the remaining 3% of the assignment marks. In this task, you will extend your knowledge learned from k-d tree to k-d forest. The process for a simplified k-d forest given N input-output pairs is:

1. Randomly select a set of N' distinct samples (i.e., no duplicates) where N' = N' * 80% (round to integer). This dataset is used for constructing a k-d tree (i.e., the root node of the k-d tree)

 

2. Build a k-d tree on the dataset from (1) and apply Algorithm 1.

3. Repeat (1) and (2) until reaching the maximum number of trees.

This process is also shown in Algorithm 2. In k-d forest learning, a sample set is used to construct a k-d tree. That is to say, different trees in the forest could have different root data. For prediction, the k-d forest will choose the most voted label as its prediction. For the wine quality prediction task, you shall apply Algorithm 2 for k-d forest learning and apply Algorithm 3 to predict the wine quality for a new wine sample. To generate samples, please use the following (incomplete) code to generate the same samples as our testing scripts:

import random ... N= ... N’=... index_list = [i for i in range(0, N)] # create a list of indexes for all data sample_indexes = [] for j in range(0,n_tree): random.seed(rand_seed+j) # random_seed is one of the input parameters subsample_idx = random.sample(index_list, k=N’) # create unique N’ indices sample_indexes = sample_indexes + subsample_id Algorithm 2 KdForest(data, d_list, rand_seed) Require:data in the form. of N input-output pairs ,d_list a list of depth 1: forest ← [] 2: n_trees ← len(d_list) 3: sample_indexes ← N'*n_trees integers with value in [0,N) generated by using above method 4: count ← 0 5: for count < n_trees do 6: sampled_data ← N' data pairs selected by N' indexes from sample_indexes sequentially 7: n = BuildKdTree(sampled_data, d_list[count]) ⇒ Algorithm 1 8: forest.append(n)

 

9: end for 10: return forest Algorithm 3 Predict_KdForest(forest, data) Require: forest is a list of tree roots, data in the form. of attribute values x. 1: labels ← [] 2: for Each tree n in the forest do 3: label ← 1NN search on tree n 4: labels.append(n) 5: end for 6: return the most voted label in labels

2.1 Deliverables

Write your random forest program in Python 3.6.9 in a file called nn_kdforest.py. Your program must be able to run as follows

$ python nn_kdforest.py [train] [test] [random_seed] [d_list]

The inputs/options to the program are as follows:

[train] specifies the path to a set of the training data file

[test] specifies the path to a set of testing data file

[random_seed] is the seed value generate random values.

[d_list] is a list of depth values (in Algorithm 2 n_trees==len(d_list))

Given the inputs, your program must learn a random forest (following the prescribed algorithms) using the training data, then predict the quality rating of each wine sample in the testing data. Your program must then print to standard output (i.e., the command prompt) the list of predicted wine quality ratings, vertically based on the order in which the testing cases appear in [test].

Submit your program in the same way as the submission for Sec. 1. For postgraduates, please submit your learning programs (nn_kdtree.py and nn_kdforest.py) to Assignment 2 - PG. The due date, late submission policy, and code reuse policy are also the same as in Sec 1.

 

2.2 Expected Run Time

Your program must be able to terminate within 600 seconds on the sample data given.

2.3 Debugging Suggestions

In addition to Sec. 1.6, another value worth checking when debugging is (but not limited to): the sample_indexes – by setting a random seed, the indexes should be the same each time you run the code

2.4 Assessment

Gradescope will compile and run your code on several test problems. If it passes all tests, you will get 3% of the overall course mark.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機打開當前頁
  • 上一篇:代寫FINC5090、代做Python語言編程
  • 下一篇:MGMT20005代寫、c/c++,Python程序代做
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久综合狠狠综合久久综青草| 亚洲视频在线观看一区| 国产精品美女久久久久久久| 国产日产高清欧美一区二区三区| 国产精品海角社区在线观看| 在线观看欧美亚洲| 一本色道**综合亚洲精品蜜桃冫| 久久久国产精品亚洲一区| 中文欧美日韩| 国产亚洲精品自拍| 亚洲一区免费视频| 欧美视频不卡中文| 亚洲巨乳在线| 亚洲国产欧美一区| 免费不卡在线观看av| 一区二区三区国产在线| 一本综合久久| 欧美婷婷六月丁香综合色| 欧美一区二区视频观看视频| 欧美性猛交视频| 亚洲摸下面视频| 国产一区二区剧情av在线| 亚洲欧美日韩国产另类专区| 免费观看亚洲视频大全| 亚洲欧美在线一区二区| 亚洲欧美另类在线| 亚洲直播在线一区| 欧美中文字幕不卡| 亚洲天堂av综合网| 欧美成人在线免费视频| 欧美视频一区二区| 欧美日韩国产在线| 欧美激情在线免费观看| 国产丝袜一区二区三区| 国产一区二区三区在线观看免费| 亚洲图片激情小说| 欧美激情精品久久久久久久变态| 国产麻豆日韩欧美久久| 欧美日韩中文字幕在线| 在线观看亚洲a| 久久久久综合| 国产视频不卡| 亚洲精品在线看| 一区一区视频| 日韩一级在线| 亚洲欧美欧美一区二区三区| 国产日韩欧美综合一区| 欧美国产第二页| 午夜精品理论片| 一本久久综合亚洲鲁鲁| 久久精品一区| 久久久噜噜噜| 欧美日韩精品在线视频| 久久久成人精品| 嫩草伊人久久精品少妇av杨幂| 欧美在线一区二区| 欧美日本不卡视频| 久久米奇亚洲| 欧美激情在线狂野欧美精品| 久久深夜福利| 欧美在线在线| 亚洲人体1000| 久久精品亚洲一区| 国产精品久久亚洲7777| 国产精品三区www17con| 欧美另类高清视频在线| 亚洲小说欧美另类社区| 欧美日本乱大交xxxxx| 久久不射中文字幕| 亚洲精品久久久久久一区二区| 免费观看日韩| 亚洲私人影院| 国产精品人成在线观看免费| 午夜天堂精品久久久久| 国产综合激情| 欧美乱大交xxxxx| 亚洲免费视频成人| 国产自产v一区二区三区c| 国产精品久久久久久久久果冻传媒| 欧美日韩综合久久| 国内精品久久久久伊人av| 亚洲国产精品福利| 国产精品中文字幕欧美| 欧美大片国产精品| 国产一区视频网站| 欧美极品欧美精品欧美视频| 国产精品国色综合久久| 国产毛片精品视频| 国产精品久久久久久久久借妻| 国产亚洲精品久久久久婷婷瑜伽| 亚洲人成网站精品片在线观看| 欧美专区一区二区三区| 欧美精品网站| 久久国产精品黑丝| 国产伦精品一区| 国产欧美不卡| 欧美国产一区视频在线观看| 狠狠操狠狠色综合网| 亚洲日产国产精品| 国产欧美日韩在线| 伊人成人网在线看| 亚洲电影免费观看高清完整版在线观看| 欧美中文日韩| 欧美激情一区三区| 亚洲美女视频在线免费观看| 在线不卡欧美| 国产精品国产一区二区| 日韩一级精品视频在线观看| 在线观看欧美成人| 欧美日韩国产在线观看| 亚洲欧美精品在线观看| 美女诱惑一区| 夜夜夜精品看看| 国产日韩av一区二区| 国产日韩欧美高清免费| 亚洲一区二区三区精品在线| 在线亚洲自拍| 欧美高清视频www夜色资源网| 亚洲与欧洲av电影| 在线综合视频| 影音先锋成人资源站| 最新亚洲视频| 亚洲小说区图片区| 亚洲欧美成人一区二区在线电影| 久久字幕精品一区| 欧美精品v国产精品v日韩精品| 久久久国产精品一区| 亚洲精品一区二区三| 欧美日韩亚洲一区二区三区四区| 国产精品对白刺激久久久| 亚洲一区二区在线免费观看视频| 欧美视频在线观看一区| 亚洲精品国产无天堂网2021| 国产精品爽爽ⅴa在线观看| 亚洲一区二区毛片| 欧美性大战xxxxx久久久| 亚洲自拍16p| 蜜桃伊人久久| 国产精品久久夜| 欧美手机在线| 欧美国产日产韩国视频| 国产亚洲精品综合一区91| 日韩视频一区二区三区在线播放免费观看| 欧美日韩国产在线| 精品69视频一区二区三区| 亚洲大黄网站| 欧美成人性网| 狠狠色伊人亚洲综合成人| 日韩午夜三级在线| 欧美日韩国产一区二区三区| 欧美黄色影院| 国产精品亚发布| 久久久久久久久久码影片| 欧美一级在线亚洲天堂| 国产精品成人一区二区艾草| 亚洲国产精品成人综合色在线婷婷| 久久一日本道色综合久久| 一本一本a久久| 一区二区三区四区五区在线| 国内精品久久久久久久果冻传媒| 欧美一区二区三区免费视| 国语自产精品视频在线看8查询8| 国产精品视频网站| 欧美日韩国产成人在线免费|