日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3007_7059 Artificial Intelligence 3007_7059
代寫3007_7059 Artificial Intelligence 3007_7059

時間:2024-09-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Assignment 2: Artificial Intelligence (3007_7059 Combined)

Assignment 2

The dataset is available here

(https://myuni.adelaide.edu.au/courses/95211/files/1453***/download)

Part 1 Wine Quality Prediction with 1NN (K-d Tree)

Wine experts evaluate the quality of wine based on sensory data. We could also collect the features of wine from objective tests, thus the objective features could be used to predict the expert’s judgment, which is the quality rating of the wine. This could be formed as a supervised learning problem with the objective features as the data features and wine quality rating as the data labels.

In this assignment, we provide objective features obtained from physicochemical statistics for each white wine sample and its corresponding rating provided by wine experts. You are expected to implement the k-d tree (KDT) and use the training set to train your k-d tree, then provide wine quality prediction on the test set by searching the tree

Wine quality rating is measured in the range of 0-9. In our dataset, we only keep the samples for quality ratings 5, 6 and 7. The 11 objective features are listed as follows [1]:

f_acid : fixed acidity

v_acid : volatile acidity

c_acid : citric acid

res_sugar : residual sugar

chlorides : chlorides

fs_dioxide : free sulfur dioxide

ts_dioxide : total sulfur dioxide

density : density

pH : pH

sulphates : sulphates

alcohol : alcohol

Explanation of the Data.

train: The first 11 columns represent the 11 features and the 12th column is the wine quality. A sample is depicted as follows:

f_acid

v_acid

c_acid

res_sugar

chlorides

fs_dioxide

ts_dioxide

density

 

sulphates

alcohol

quality

8.10

0.270

0.41

1.45

0.033

11.0

63.0

0.9**80

2.99

0.56

12.0

5

8.60

0.230

0.40

4.20

0.035

17.0

109.0

0.99**0

3.14

0.53

9.7

5

7.**

0.180

0.74

1.20

0.040

16.0

75.0

0.99200

3.18

0.63

10.8

5

8.30

0.420

0.62

19.25

0.040

41.0

172.0

1.00020

2.98

0.67

9.7

5

6.50

0.310

0.14

7.50

0.044

34.0

133.0

0.99550

3.22

0.50

9.5

5

test: The first 11 columns represent the 11 features and the 12th column is the wine quality. A sample is depicted as follows:

f_acid

v_acid

c_acid

res_sugar

chlorides

fs_dioxide

ts_dioxide

density

pH

sulphates

alcohol

7.0

0.360

0.14

11.60

0.043

35.0

228.0

0.99770

3.13

0.51

8.**0000

6.3

0.270

0.18

7.70

0.048

45.0

186.0

0.99620

3.23

0.**

9.000000

7.2

0.2**

0.20

7.70

0.046

51.0

174.0

0.99582

3.16

0.52

9.500000

7.1

0.140

0.35

1.40

0.039

24.0

128.0

0.99212

2.97

0.68

10.400000

7.6

0.480

0.28

10.40

0.049

57.0

205.0

0.99748

3.24

0.45

9.300000

1.1 1NN (K-d Tree)

From the given training data, our goal is to learn a function that can predict the wine quality rating of a wine sample, based on the objective features. In this assignment, the predictor function will be constructed as a k-d tree. Since the attributes (objective features) are continuously valued, you shall apply the k-d tree algorithm for continuous data, as outlined in Algorithms 1. It is the same as taught in the lecture. Once the tree is constructed, you will search the tree to find the **nearest neighbour of a query point and label the query point. Please refer to the search logic taught in the lecture to write your code for the 1NN search.

 

Algorithm 1 BuildKdTree(P, D) Require: A set of points P of M dimensions and current depth D. 1: if P is empty then 2: return null 3: else if P only has one data point then 4: Create new node node 5: node.d ← d 6: node.val ← val 7: node.point ← current point 8: return node 9: else 10: d ← D mod M 11: val ← Median value along dimension among points in P. 12: Create new node node. 13: node.d ← d 14: node.val ← val 15: node.point ← point at the median along dimension d 16: node.left ← BuildKdTree(points in P for which value at dimension d is less than or equal to val, D+1) 17: node.right ← BuildKdTree(points in P for which value at dimension d is greater than val, D+ 1) 18: return node 19: end if

Note: Sorting is not necessary in some cases depending on your implementation. Please figure out whether your code needs to sort the number first. Also, if you compute the median by yourself, when there’s an even number of points, say [1,2,3,4], the median is 2.5.

 

1.2 Deliverable

Write your k-d tree program in Python 3.6.9 in a file called nn_kdtree.py. Your program must be able to run as follows:

$ python nn_kdtree.py [train] [test] [dimension]

The inputs/options to the program are as follows:

[train] specifies the path to a set of the training data file

[test] specifies the path to a set of testing data file

[dimension] is used to decide which dimension to start the comparison. (Algorithm 1)

Given the inputs, your program must construct a k-d tree (following the prescribed algorithms) using the training data, then predict the quality rating of each of the wine samples in the testing data. Your program must then print to standard output (i.e., the command prompt) the list of predicted wine quality ratings, vertically based on the order in which the testing cases appear in [test].

1.3 Python Libraries

You are allowed to use the Python standard library to write your k-d tree learning program (see https://docs.python.org/3/library/(https://docs.python.org/3/library/) for the components that make up the Python v3.6.9 standard library). In addition to the standard library, you are allowed to use NumPy and Pandas. Note that the marking program will not be able to run your program to completion if other third-party libraries are used. You are NOT allowed to use implemented tree structures from any Python package, otherwise the mark will be set to 0.

1.4 Submission

You must submit your program files on Gradescope. Please use the course code NPD6JD to enroll in the course. Instructions on accessing Gradescope and submitting assignments are provided at https://help.gradescope.com/article/5d3ifaeqi4-student-canvas (https://help.gradescope.com/article/5d3ifaeqi4-student-canvas) .

For undergraduates, please submit your k-d tree program (nn_kdtree.py) to Assignment 2 - UG.

1.5 Expected Run Time

Your program must be able to terminate within 600 seconds on the sample data given.

 

1.6 Debugging Suggestions

Step-by-step debugging by checking intermediate values/results will help you to identify the problems of your code. This function is enabled by most of the Python IDE. If not in your case, you could also print the intermediate values out. You could use sample data or create data in the same format for debugging

1.7 Assessment

Gradescope will compile and run your code on several test problems. If it passes all tests, you will get 15% (undergrads) or 12% (postgrads) of the overall course mark. For undergraduates, bonus marks of 3% will be awarded if Section 2 is completed correctly.

There will be no further manual inspection/grading of your program to award marks based on coding style, commenting, or “amount” of code written.

1.8 Using other source code

You may not use other source code for this assignment. All submitted code must be your own work written from scratch. Only by writing the solution yourself will you fully understand the concept.

1.9 Due date and late submission policy

This assignment is due by 11:59 pm Friday 3 May 2024. If your submission is late, the maximum mark you can obtain will be reduced by 25% per day (or part thereof) past the due date or any extension you are granted.

Part 2 Wine Quality Prediction with Random Forest

For postgraduate students, completing this section will give you the remaining 3% of the assignment marks. In this task, you will extend your knowledge learned from k-d tree to k-d forest. The process for a simplified k-d forest given N input-output pairs is:

1. Randomly select a set of N' distinct samples (i.e., no duplicates) where N' = N' * 80% (round to integer). This dataset is used for constructing a k-d tree (i.e., the root node of the k-d tree)

 

2. Build a k-d tree on the dataset from (1) and apply Algorithm 1.

3. Repeat (1) and (2) until reaching the maximum number of trees.

This process is also shown in Algorithm 2. In k-d forest learning, a sample set is used to construct a k-d tree. That is to say, different trees in the forest could have different root data. For prediction, the k-d forest will choose the most voted label as its prediction. For the wine quality prediction task, you shall apply Algorithm 2 for k-d forest learning and apply Algorithm 3 to predict the wine quality for a new wine sample. To generate samples, please use the following (incomplete) code to generate the same samples as our testing scripts:

import random ... N= ... N’=... index_list = [i for i in range(0, N)] # create a list of indexes for all data sample_indexes = [] for j in range(0,n_tree): random.seed(rand_seed+j) # random_seed is one of the input parameters subsample_idx = random.sample(index_list, k=N’) # create unique N’ indices sample_indexes = sample_indexes + subsample_id Algorithm 2 KdForest(data, d_list, rand_seed) Require:data in the form. of N input-output pairs ,d_list a list of depth 1: forest ← [] 2: n_trees ← len(d_list) 3: sample_indexes ← N'*n_trees integers with value in [0,N) generated by using above method 4: count ← 0 5: for count < n_trees do 6: sampled_data ← N' data pairs selected by N' indexes from sample_indexes sequentially 7: n = BuildKdTree(sampled_data, d_list[count]) ⇒ Algorithm 1 8: forest.append(n)

 

9: end for 10: return forest Algorithm 3 Predict_KdForest(forest, data) Require: forest is a list of tree roots, data in the form. of attribute values x. 1: labels ← [] 2: for Each tree n in the forest do 3: label ← 1NN search on tree n 4: labels.append(n) 5: end for 6: return the most voted label in labels

2.1 Deliverables

Write your random forest program in Python 3.6.9 in a file called nn_kdforest.py. Your program must be able to run as follows

$ python nn_kdforest.py [train] [test] [random_seed] [d_list]

The inputs/options to the program are as follows:

[train] specifies the path to a set of the training data file

[test] specifies the path to a set of testing data file

[random_seed] is the seed value generate random values.

[d_list] is a list of depth values (in Algorithm 2 n_trees==len(d_list))

Given the inputs, your program must learn a random forest (following the prescribed algorithms) using the training data, then predict the quality rating of each wine sample in the testing data. Your program must then print to standard output (i.e., the command prompt) the list of predicted wine quality ratings, vertically based on the order in which the testing cases appear in [test].

Submit your program in the same way as the submission for Sec. 1. For postgraduates, please submit your learning programs (nn_kdtree.py and nn_kdforest.py) to Assignment 2 - PG. The due date, late submission policy, and code reuse policy are also the same as in Sec 1.

 

2.2 Expected Run Time

Your program must be able to terminate within 600 seconds on the sample data given.

2.3 Debugging Suggestions

In addition to Sec. 1.6, another value worth checking when debugging is (but not limited to): the sample_indexes – by setting a random seed, the indexes should be the same each time you run the code

2.4 Assessment

Gradescope will compile and run your code on several test problems. If it passes all tests, you will get 3% of the overall course mark.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機打開當前頁
  • 上一篇:代寫FINC5090、代做Python語言編程
  • 下一篇:MGMT20005代寫、c/c++,Python程序代做
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        一区二区三区三区在线| 亚洲视频成人| 国产女同一区二区| 国产欧美一区二区三区另类精品| 亚洲免费一区二区| 欧美一区二区成人6969| 国产午夜久久久久| 香蕉视频成人在线观看| 国产日韩精品在线观看| 亚洲一区日韩| 亚洲一区二区视频| 在线视频国内自拍亚洲视频| 鲁大师成人一区二区三区| 国产精品青草久久| 亚洲你懂的在线视频| 国产精品系列在线| 国产一区二区高清视频| 欧美日韩国产色综合一二三四| 欧美在线播放一区二区| 在线观看欧美黄色| 国产精品v日韩精品v欧美精品网站| 国产精品久久久久久久久久妞妞| 国产视频自拍一区| 国产女主播在线一区二区| 精品不卡一区二区三区| 欧美成人免费va影院高清| 亚洲欧洲一区二区三区在线观看| 国产精品任我爽爆在线播放| 欧美三级资源在线| 欧美视频在线观看一区| 亚洲综合日本| 亚洲裸体视频| 久久精品视频亚洲| 欧美性猛交99久久久久99按摩| 国产精品视屏| 亚洲午夜精品久久久久久浪潮| 欧美另类极品videosbest最新版本| 国产九色精品成人porny| 国产日韩欧美不卡| 国产欧美视频在线观看| 亚洲调教视频在线观看| 亚洲欧美在线磁力| 免费人成精品欧美精品| 欧美视频中文在线看| 欧美极品一区二区三区| 国内揄拍国内精品久久| 欧美另类videos死尸| 亚洲午夜伦理| 一区二区免费看| 亚洲视频axxx| 欧美电影资源| 免费美女久久99| 欧美日韩国产精品一卡| 欧美色图一区二区三区| 久久精品视频播放| 欧美日韩国产综合视频在线观看| 亚洲无线观看| 久久精品亚洲精品国产欧美kt∨| 亚洲激情婷婷| 久久福利一区| 国产精品卡一卡二卡三| 欧美肥婆bbw| 精品成人国产在线观看男人呻吟| 黄色成人在线| 日韩天堂在线视频| 欧美专区福利在线| 正在播放亚洲| 韩国精品久久久999| 欧美国产日韩一区二区在线观看| 亚洲欧洲一级| 99国内精品久久久久久久软件| 蜜桃伊人久久| 在线精品观看| 国产精品久久久久久久久免费樱桃| 亚洲在线成人精品| 依依成人综合视频| 亚洲精品国产日韩| 久久亚洲精品中文字幕冲田杏梨| 狠狠色狠狠色综合| 久久日韩精品| 在线观看免费视频综合| 欧美精品一区在线播放| 欧美日韩一区视频| 麻豆成人综合网| 美女主播一区| 亚洲一区二区三区四区在线观看| 黄色欧美成人| 黄色成人91| 国产精品男gay被猛男狂揉视频| 日韩午夜免费视频| 国产综合第一页| 亚洲卡通欧美制服中文| 在线亚洲一区| 久久亚洲综合色一区二区三区| 国产午夜精品美女视频明星a级| av成人福利| 亚洲小说欧美另类婷婷| 午夜欧美视频| 亚洲伊人第一页| 狠狠色伊人亚洲综合网站色| 亚洲黄色尤物视频| 欧美激情按摩| 国产精品a久久久久久| 在线成人激情黄色| 国产一区 二区 三区一级| 欧美日韩一区免费| 一区二区三区四区五区视频| 久久狠狠久久综合桃花| 国产主播一区二区三区| 亚洲日韩成人| 欧美日韩亚洲网| 性色av一区二区三区红粉影视| 国产精品福利在线| 国一区二区在线观看| 亚洲另类春色国产| 在线欧美日韩国产| 亚洲精品看片| 在线一区日本视频| 亚洲精品国产精品乱码不99按摩| 亚洲综合精品一区二区| 亚洲电影免费观看高清完整版在线| 欧美精品日日鲁夜夜添| 国产欧美一区二区精品秋霞影院| 亚洲国产精品精华液网站| 久久亚洲春色中文字幕久久久| 亚洲一区二区少妇| 激情久久久久久久久久久久久久久久| 亚洲一区二区三区中文字幕| 韩国精品久久久999| 久久久国产精品亚洲一区| 亚洲新中文字幕| 欧美精品激情blacked18| 亚洲国产精品视频一区| 亚洲第一区在线| 久久久亚洲欧洲日产国码αv| 亚洲国产裸拍裸体视频在线观看乱了中文| 亚洲级视频在线观看免费1级| 国产视频观看一区| 欧美承认网站| 欧美福利精品| 久久国产免费看| 久久精品1区| 亚洲最新视频在线| 亚洲国产一区二区三区高清| 欧美一级艳片视频免费观看| 欧美一区在线直播| 欧美区一区二区三区| 韩国精品主播一区二区在线观看| 免费人成网站在线观看欧美高清| 亚洲精品国精品久久99热一| 精久久久久久久久久久| 国产精品亚洲аv天堂网| 久久黄色小说| 午夜精品一区二区在线观看| 亚洲欧美精品suv| 一本色道久久综合亚洲91| 国产精品盗摄久久久| 欧美大片免费| 欧美一区永久视频免费观看| 久久国产精品72免费观看| 一区二区在线看| 国产日韩欧美在线观看| 亚洲欧洲日韩综合二区| 国产精品卡一卡二|