日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP 627代寫、代做Python設計程序
COMP 627代寫、代做Python設計程序

時間:2024-08-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP 627 – Assignment 1 
 
Note: Refer to Eq. 2.11 in the textbook for weight update. Both weights, w1 and b, need to be adjusted. 
According to Eq. 2.11, for input x1, error E = t-y and learning rate β: 
w1_new=w1_old+ β E x1; 
bnew= bold+ β E 
COMP 627 Neural Networks and Applications 
Assignment 1 
Perceptron and Linear neuron: Manual training and real-life case 
studies 
 
Part 1: Perceptron 
[08 marks] 
 
 
 Download Fish_data.csv file from LEARN page. Use this dataset to answer the two questions (i) and (ii) 
below on Perceptron. The dataset consists of 3 columns. The first two columns are inputs (ring 
diameter of scales of fish grown in sea water and fresh water, respectively). The third column is the 
output which states whether the category of the fish is Canadian or Alaskan (the value is 0 for Canadian 
and 1 for Alaskan). Perceptron model classifies fish into Canadian or Alaskan depending on these two 
measures of ring diameter of scales. 
(i) Extract the first AND last row of data and label these rows 1 and 2. Use an initial weight 
vector of [w1= 102, w2= -28, b= 5.0] and learning rate β of 0.5 for training a perceptron 
model manually as below: 
Adjust the weights in example-by-example mode of learning using the two input vectors. 
Present the input data in the order of rows 1 and 2 to the perceptron. After presentation 
of each input vector and corresponding weight adjustment, show the resulting 
classification boundary on the two data points as in Fig. 2.15 in the book. For each round 
of weight adjustment, there will be a new classification boundary line. You can do the 
plots on Excel, by hand, python or any other plotting software. Repeat this for 2 epochs 
(i.e., pass the two input vectors twice through the perceptron). 
(4 marks) 
 
 
(ii) Write python code to create a perceptron model to use the whole dataset in fish.csv to 
classify fish into Canadian or Alaskan depending on the two input measures of ring 
diameter of scales. Use 200 epochs for accurate models. 
 
Modify your python code to show the final classification boundary on the data. 
 
Write the equation of this boundary line. 
Compare with the classification boundary in the book. 
(4 marks) 2 
COMP 627 – Assignment 1 
 
Note: For adjusting weights, follow the batch learning example for linear neuron on page 57 of the 
textbook that follows Eq. 2.36. After each epoch, adjust the weights as follows: 
 
 w1_new=w1_old + β (E1 x1 + E2 x2)/2 
bnew= bold + β (E1 + E2)/2 
where E1 and E2 are the errors for the two inputs. 
 
 
 
Part 2: Single Linear Neuron 
 
[12 marks] 
Download heat_influx_north_south.csv file from LEARN page. Use this dataset to develop a single 
linear neuron model to answer the questions (i) to (v) below. This is the dataset that we learned about 
in the text book and lectures where a linear neuron model had been trained to predict heat influx in 
to a house from the north and south elevations of the house. Note that the dataset has been 
normalised (between 0 and 1) to increase the accuracy of the models. When data (inputs and outputs) 
have very different ranges, normalisation helps balance this issue. 
(i) Use two rows of data (rows 1 and 2 (0.319, 0.929) and (0.302, 0.49)), respectively, to train 
a linear neuron manually to predict heat influx into a home based on the north elevation 
(angle of exposure to the sun) of the home (value in ‘North’ column is the input for the 
single neuron where output is the value in ‘HeatFlux’ column). Use an initial weight vector 
of [b (bias) = 2.1, w1= -0.2] and learning rate of 0.5. Bias input =1. You need to adjust 
both weights, b and w1. 
(3 marks) 
 
a) Train the linear neuron manually in batch mode. Repeat this for 2 epochs. 
 
Note: 
Try to separate the dataset into two datasets based on the value in ‘Canadian_0_Alaskan_1’ column. 
Example code is given below. 
#create dataframe X1 with input columns of the rows with the value 0 in 'Canadian_0_Alaskan_1' column 
X1 = df.loc[df["Canadian_0_Alaskan_1"] == 0].iloc[:, 0:2] 
 
 
Plot the data of two datasets with different markers ‘o’ and ‘x’. 
Plot the decision boundary line using the equation used in Laboratory Tutorial 2 – Part 2 (Please note 
that there is a correction in the equation and the updated assignment is available on LEARN). 
Final plot should be like this. 3 
COMP 627 – Assignment 1 
 
1 2 
Note: To retrieve the mean squared error, you can use the following code 
 
from sklearn.metrics import mean_squared_error 
print(mean_squared_error(Y, predicted_y)) 
b) After the training with the 2 epochs is over, use your final weights to test how the 
neuron is now performing by passing the same two data points again into the neuron 
and computing error for each input (E1 and E2). Compute Mean Square Error (MSE) 
for the 2 inputs using the formula below. 
 
   
2+   
2
 
MSE = 

 
(ii) Write a python program to train a single linear neuron model using all data to predict heat 
influx from north elevation (value in ‘North’ column is the input for the single neuron 
where output is the value in ‘HeatFlux’ column) using all data. Train the model with 3000 
epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the neuron function (linear 
equation showing input-output relationship as in Eq. 2.44) and plot the neuron function 
on data as in Figure 2.34 in the textbook. 
 
Modify the code to retrieve the mean square error (MSE) and R
2
 score for the trained 
neuron model. 
(3 marks) 
 
 
(iii) Write a python program to train a linear neuron on the whole data set to predict heat 
influx from north and south elevations (using the two inputs from the two columns 
‘South’ and ‘North’). Train the model with 3000 epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the network function. 
 
Modify your program to find the Mean Square Error (MSE) and R
2
 score of the model. 
 
Compare the error difference between the previous one-input case (in part (ii)) and the 
current two-input case. 
(4 marks) 
 
(iv) Modify the program to plot the data and the network function on the same plot (Refer to 
the Laboratory Tutorial 4). Plot the network function on the data (3D plot of predicted 
heat influx as a function plotted against north and south elevations.(1 marks) 
Note: Neural Network develops a function (plane/surface) that goes through the data as closely as 
possible. Here, we want to see how close this surface is to the data. Since we have 2 inputs, we need a 
3-D plot to see this. We plot the network function against the two inputs. 
Your final output should look like this: 4 
COMP 627 – Assignment 1 
 
Note: In the plot in part (iv) above, the network function was shown as a surface plotted against the 2 
inputs. However, you can also calculate the NN predicted heat influx for those exact input values for north 
and south elevations in the dataset (as opposed to showing the function) and then plot the predicted heat 
influx and target heat influx on the same 3D plot against the 2 inputs. 
Your final output should look like this: 
(v) Plot the network predicted heat influx values and target heat influx values against the two 
inputs (3D data plot). 
(1 marks) 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代做COMP5216、代寫Java設計編程
  • 下一篇:代做QBUS3330、c++,Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产亚洲精品久| 一区二区三区高清在线| 亚洲一区二区三区在线看| 国产一区二区电影在线观看| 欧美在线视频观看免费网站| 久久婷婷国产综合国色天香| 欧美激情欧美激情在线五月| 欧美日韩情趣电影| 亚洲欧美日韩综合aⅴ视频| 久久精品99| 久久在线精品| 欧美天堂亚洲电影院在线观看| 欧美激情一区二区三区在线| 国产日韩欧美精品在线| 一区二区三区欧美在线| 黄色工厂这里只有精品| 亚洲国产女人aaa毛片在线| 亚洲欧洲一区二区三区| 亚洲精品永久免费| 麻豆精品精品国产自在97香蕉| 久久一区二区三区av| 欧美亚日韩国产aⅴ精品中极品| 亚洲理论在线| 欧美午夜大胆人体| 亚洲欧美激情诱惑| 韩日精品中文字幕| 欧美在线看片| 亚洲激情专区| 国产日韩亚洲欧美| 欧美成人有码| 中国成人亚色综合网站| 午夜精品一区二区三区电影天堂| 国产精品视频九色porn| 欧美在线999| 久久久久久自在自线| 欧美在线免费视频| 亚洲小视频在线观看| 亚洲黑丝一区二区| 欧美电影专区| 日韩视频在线你懂得| 国产日产高清欧美一区二区三区| 99在线精品视频在线观看| 亚洲午夜视频在线| 麻豆精品精品国产自在97香蕉| 香蕉乱码成人久久天堂爱免费| 一本大道久久a久久精二百| 久久综合一区二区| 久久夜色精品国产欧美乱极品| 欧美日韩在线免费| 好看不卡的中文字幕| 国产精品毛片在线看| 久久夜色撩人精品| 久久久久久一区| 精品成人一区| 亚洲你懂的在线视频| 亚洲一区二区三区四区视频| 亚洲欧洲99久久| 欧美亚洲免费高清在线观看| 国产精品一区二区三区观看| 国产精品欧美风情| 亚洲高清在线观看| 国产亚洲一区二区三区| 欧美午夜精品久久久久久超碰| 伊人伊人伊人久久| 亚洲欧美日韩一区二区| 亚洲欧美日韩另类| 亚洲精品久久嫩草网站秘色| 欧美福利网址| 亚洲欧美国内爽妇网| 欧美日本久久| 国产一区二区激情| 久久久久国色av免费看影院| 一区二区三区产品免费精品久久75| 亚洲精品免费一区二区三区| 日韩视频在线观看一区二区| 欧美日韩精品一区二区三区| 欧美三区视频| 国产欧美一区二区精品性| 夜夜爽av福利精品导航| 一区二区免费在线观看| 国产精品久久久久久久久搜平片| 久久福利电影| 亚洲国内精品在线| 亚洲免费婷婷| 国产精品欧美精品| 亚洲第一色中文字幕| 亚洲精品一二区| 亚洲视频1区| 国产精品久久久久久久久动漫| 合欧美一区二区三区| 欧美一区二区三区喷汁尤物| 亚洲精品欧美在线| 国产精自产拍久久久久久| 久久综合国产精品| 性欧美大战久久久久久久免费观看| 蜜乳av另类精品一区二区| 欧美日韩极品在线观看一区| 国产亚洲一二三区| 一本一本久久a久久精品综合麻豆| 欧美黄色小视频| 亚洲午夜精品17c| 亚洲成色777777女色窝| 国产精品日本欧美一区二区三区| 久久久亚洲欧洲日产国码αv| 国产精品视频男人的天堂| 久久在线视频| 欧美日韩国产综合视频在线| 欧美特黄一级大片| 国产性猛交xxxx免费看久久| 亚洲精品免费一二三区| 亚洲免费网址| 一本色道久久综合亚洲91| 尤妮丝一区二区裸体视频| 噜噜噜91成人网| 亚洲图片欧美午夜| 亚洲欧美日韩另类精品一区二区三区| 亚洲欧美日韩国产成人| 国产精品不卡在线| 开元免费观看欧美电视剧网站| 亚洲精品国精品久久99热| 欧美在线观看你懂的| 国产欧美综合一区二区三区| 欧美性理论片在线观看片免费| 夜夜嗨av一区二区三区四季av| 久久精品女人天堂| 欧美岛国在线观看| 欧美性生交xxxxx久久久| 亚洲国产婷婷综合在线精品| 国产综合视频在线观看| 国产午夜亚洲精品理论片色戒| 亚洲区第一页| 久久久精品动漫| 国产一区二区精品久久91| 国产欧美日韩亚州综合| 亚洲天堂偷拍| 国产精品国产亚洲精品看不卡15| 欧美丰满少妇xxxbbb| 欧美日韩一区二区三区在线| 亚洲在线视频免费观看| 在线亚洲美日韩| 欧美涩涩网站| 美女脱光内衣内裤视频久久影院| 国产偷自视频区视频一区二区| 99国产精品视频免费观看| 亚洲欧美日韩国产另类专区| 国产原创一区二区| 国产精品免费aⅴ片在线观看| 狠狠色丁香婷婷综合久久片| 亚洲精品一区二区三区在线观看| 一区二区三区高清不卡| 韩国av一区二区| 中文日韩电影网站| 国产日本欧美一区二区三区| 亚洲网站在线观看| 久久综合久久综合久久综合| 国产日韩欧美一区二区三区在线观看| 一区二区三区在线看| 免费成人毛片| 欧美性色综合| 亚洲免费一区二区| 亚洲视频免费在线| 欧美日韩免费一区二区三区视频| 亚洲最黄网站| 欧美三级韩国三级日本三斤|