日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP 627代寫、代做Python設計程序
COMP 627代寫、代做Python設計程序

時間:2024-08-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP 627 – Assignment 1 
 
Note: Refer to Eq. 2.11 in the textbook for weight update. Both weights, w1 and b, need to be adjusted. 
According to Eq. 2.11, for input x1, error E = t-y and learning rate β: 
w1_new=w1_old+ β E x1; 
bnew= bold+ β E 
COMP 627 Neural Networks and Applications 
Assignment 1 
Perceptron and Linear neuron: Manual training and real-life case 
studies 
 
Part 1: Perceptron 
[08 marks] 
 
 
 Download Fish_data.csv file from LEARN page. Use this dataset to answer the two questions (i) and (ii) 
below on Perceptron. The dataset consists of 3 columns. The first two columns are inputs (ring 
diameter of scales of fish grown in sea water and fresh water, respectively). The third column is the 
output which states whether the category of the fish is Canadian or Alaskan (the value is 0 for Canadian 
and 1 for Alaskan). Perceptron model classifies fish into Canadian or Alaskan depending on these two 
measures of ring diameter of scales. 
(i) Extract the first AND last row of data and label these rows 1 and 2. Use an initial weight 
vector of [w1= 102, w2= -28, b= 5.0] and learning rate β of 0.5 for training a perceptron 
model manually as below: 
Adjust the weights in example-by-example mode of learning using the two input vectors. 
Present the input data in the order of rows 1 and 2 to the perceptron. After presentation 
of each input vector and corresponding weight adjustment, show the resulting 
classification boundary on the two data points as in Fig. 2.15 in the book. For each round 
of weight adjustment, there will be a new classification boundary line. You can do the 
plots on Excel, by hand, python or any other plotting software. Repeat this for 2 epochs 
(i.e., pass the two input vectors twice through the perceptron). 
(4 marks) 
 
 
(ii) Write python code to create a perceptron model to use the whole dataset in fish.csv to 
classify fish into Canadian or Alaskan depending on the two input measures of ring 
diameter of scales. Use 200 epochs for accurate models. 
 
Modify your python code to show the final classification boundary on the data. 
 
Write the equation of this boundary line. 
Compare with the classification boundary in the book. 
(4 marks) 2 
COMP 627 – Assignment 1 
 
Note: For adjusting weights, follow the batch learning example for linear neuron on page 57 of the 
textbook that follows Eq. 2.36. After each epoch, adjust the weights as follows: 
 
 w1_new=w1_old + β (E1 x1 + E2 x2)/2 
bnew= bold + β (E1 + E2)/2 
where E1 and E2 are the errors for the two inputs. 
 
 
 
Part 2: Single Linear Neuron 
 
[12 marks] 
Download heat_influx_north_south.csv file from LEARN page. Use this dataset to develop a single 
linear neuron model to answer the questions (i) to (v) below. This is the dataset that we learned about 
in the text book and lectures where a linear neuron model had been trained to predict heat influx in 
to a house from the north and south elevations of the house. Note that the dataset has been 
normalised (between 0 and 1) to increase the accuracy of the models. When data (inputs and outputs) 
have very different ranges, normalisation helps balance this issue. 
(i) Use two rows of data (rows 1 and 2 (0.319, 0.929) and (0.302, 0.49)), respectively, to train 
a linear neuron manually to predict heat influx into a home based on the north elevation 
(angle of exposure to the sun) of the home (value in ‘North’ column is the input for the 
single neuron where output is the value in ‘HeatFlux’ column). Use an initial weight vector 
of [b (bias) = 2.1, w1= -0.2] and learning rate of 0.5. Bias input =1. You need to adjust 
both weights, b and w1. 
(3 marks) 
 
a) Train the linear neuron manually in batch mode. Repeat this for 2 epochs. 
 
Note: 
Try to separate the dataset into two datasets based on the value in ‘Canadian_0_Alaskan_1’ column. 
Example code is given below. 
#create dataframe X1 with input columns of the rows with the value 0 in 'Canadian_0_Alaskan_1' column 
X1 = df.loc[df["Canadian_0_Alaskan_1"] == 0].iloc[:, 0:2] 
 
 
Plot the data of two datasets with different markers ‘o’ and ‘x’. 
Plot the decision boundary line using the equation used in Laboratory Tutorial 2 – Part 2 (Please note 
that there is a correction in the equation and the updated assignment is available on LEARN). 
Final plot should be like this. 3 
COMP 627 – Assignment 1 
 
1 2 
Note: To retrieve the mean squared error, you can use the following code 
 
from sklearn.metrics import mean_squared_error 
print(mean_squared_error(Y, predicted_y)) 
b) After the training with the 2 epochs is over, use your final weights to test how the 
neuron is now performing by passing the same two data points again into the neuron 
and computing error for each input (E1 and E2). Compute Mean Square Error (MSE) 
for the 2 inputs using the formula below. 
 
   
2+   
2
 
MSE = 

 
(ii) Write a python program to train a single linear neuron model using all data to predict heat 
influx from north elevation (value in ‘North’ column is the input for the single neuron 
where output is the value in ‘HeatFlux’ column) using all data. Train the model with 3000 
epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the neuron function (linear 
equation showing input-output relationship as in Eq. 2.44) and plot the neuron function 
on data as in Figure 2.34 in the textbook. 
 
Modify the code to retrieve the mean square error (MSE) and R
2
 score for the trained 
neuron model. 
(3 marks) 
 
 
(iii) Write a python program to train a linear neuron on the whole data set to predict heat 
influx from north and south elevations (using the two inputs from the two columns 
‘South’ and ‘North’). Train the model with 3000 epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the network function. 
 
Modify your program to find the Mean Square Error (MSE) and R
2
 score of the model. 
 
Compare the error difference between the previous one-input case (in part (ii)) and the 
current two-input case. 
(4 marks) 
 
(iv) Modify the program to plot the data and the network function on the same plot (Refer to 
the Laboratory Tutorial 4). Plot the network function on the data (3D plot of predicted 
heat influx as a function plotted against north and south elevations.(1 marks) 
Note: Neural Network develops a function (plane/surface) that goes through the data as closely as 
possible. Here, we want to see how close this surface is to the data. Since we have 2 inputs, we need a 
3-D plot to see this. We plot the network function against the two inputs. 
Your final output should look like this: 4 
COMP 627 – Assignment 1 
 
Note: In the plot in part (iv) above, the network function was shown as a surface plotted against the 2 
inputs. However, you can also calculate the NN predicted heat influx for those exact input values for north 
and south elevations in the dataset (as opposed to showing the function) and then plot the predicted heat 
influx and target heat influx on the same 3D plot against the 2 inputs. 
Your final output should look like this: 
(v) Plot the network predicted heat influx values and target heat influx values against the two 
inputs (3D data plot). 
(1 marks) 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代做COMP5216、代寫Java設計編程
  • 下一篇:代做QBUS3330、c++,Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        99精品久久免费看蜜臀剧情介绍| 欧美一区二区福利在线| 国产伦精品一区二区三区照片91| 午夜精品久久久99热福利| 欧美激情亚洲自拍| 欧美精品videossex性护士| 国产拍揄自揄精品视频麻豆| 欧美天天影院| 欧美一区二区视频免费观看| 亚洲婷婷在线| 亚洲一区999| 亚洲天堂网站在线观看视频| 久久久无码精品亚洲日韩按摩| 裸体一区二区| 国产精品久久久久久久久借妻| 国产日韩一区二区三区在线| 亚洲国产一区二区视频| 欧美日韩1区2区3区| 欧美日韩亚洲成人| 欧美日韩一区国产| 一本一本大道香蕉久在线精品| 欧美日韩在线精品一区二区三区| 亚洲电影欧美电影有声小说| 亚洲男人的天堂在线aⅴ视频| 性欧美办公室18xxxxhd| 国产精品红桃| 亚洲电影在线观看| 亚洲欧美一区二区激情| 欧美中文字幕在线| 国产精品对白刺激久久久| 国产精品白丝jk黑袜喷水| 国产视频精品xxxx| 日韩网站在线观看| 国内精品视频666| 亚洲成色999久久网站| 在线观看av一区| 一区二区高清视频| 国产综合在线视频| 日韩一级成人av| 欧美日韩亚洲不卡| 在线天堂一区av电影| 亚洲黄色在线视频| 国产美女精品人人做人人爽| 欧美日韩喷水| 国产精品久久久一本精品| 久久综合伊人| 欧美激情一区二区三区在线视频观看| 国产精品久久久久久亚洲调教| 91久久精品国产91久久性色tv| 国产精品福利网站| 久久亚裔精品欧美| 亚洲国产高清在线| 欧美日韩一区二区三区在线观看免| 亚洲区国产区| 日韩一级网站| 欧美日韩国产欧美日美国产精品| 国产精品美女主播| 欧美极品色图| 午夜久久99| 亚洲午夜三级在线| 亚洲国产精品成人综合色在线婷婷| 久久亚洲综合网| 欧美午夜视频在线| 男女激情视频一区| 欧美日韩精品一区二区在线播放| 亚洲天堂成人在线视频| 黄色亚洲免费| 亚洲精品国产品国语在线app| 欧美日本一区二区视频在线观看| 久久国产一区二区| 欧美日韩福利| 亚洲免费视频中文字幕| 久久精品99久久香蕉国产色戒| 欧美麻豆久久久久久中文| 欧美日韩亚洲国产精品| 欧美三级午夜理伦三级中文幕| 国产精品久久久久秋霞鲁丝| 亚洲香蕉伊综合在人在线视看| 欧美大胆人体视频| 午夜在线不卡| 久久久国产午夜精品| 欧美日本三级| 一区二区三区你懂的| 99xxxx成人网| 国产亚洲精久久久久久| 欧美在线视频观看免费网站| 国产精品久久久久影院色老大| 国产一区二区三区在线观看免费视频| 国产欧美大片| 亚洲性图久久| 激情久久婷婷| 亚洲精品久久在线| 亚洲激情一区二区| 欧美精品成人一区二区在线观看| 亚洲美女视频在线观看| 久久精品国产一区二区三区| 欧美日韩成人在线视频| 欧美大尺度在线观看| 免费人成精品欧美精品| 国产精品毛片高清在线完整版| 国产一区二区三区日韩| 欧美成人免费va影院高清| 欧美国产激情| 欧美日韩精品免费观看视一区二区| 亚洲影音先锋| 国产精品久久久久婷婷| 影音先锋亚洲视频| 欧美综合二区| 国产精品国产三级国产aⅴ入口| 亚洲自拍三区| 国产精品久久久久久久久久免费看| 国产精品视频一区二区高潮| 欧美视频在线观看| 久久乐国产精品| 国产一区二区三区电影在线观看| 国产精品久久久久9999吃药| 亚洲视频专区在线| 免费不卡视频| 国产精品久久久久一区二区三区共| 欧美午夜精品久久久久久久| 久久gogo国模裸体人体| 亚洲一区二区在线| 免费在线亚洲欧美| 国产精品资源在线观看| 影音先锋欧美精品| 欧美另类高清视频在线| 国产精品主播| 久久免费视频网| 亚洲精品九九| 欧美日韩免费观看一区=区三区| 欧美激情精品久久久久久久变态| 牛夜精品久久久久久久99黑人| 欧美在线免费视频| 在线日本高清免费不卡| 久久狠狠亚洲综合| 在线观看欧美成人| 国产精品二区在线观看| 国产视频一区在线观看| 欧美一区二区| 国产麻豆精品久久一二三| 国产精品欧美日韩| 久久久综合激的五月天| 欧美亚洲在线视频| 国产精品乱码久久久久久| 国内精品久久久久国产盗摄免费观看完整版| 欧美激情一区二区三区在线| 亚洲免费观看| 欧美xart系列在线观看| 国产精品v日韩精品v欧美精品网站| 欧美日韩国产一区二区| 亚洲天堂av电影| 亚洲区一区二区三区| 国产精品高潮视频| 在线一区二区日韩| 国产欧美日韩高清| 国产欧美日韩三区| 欧美日韩成人在线| 久久久久久9| 亚洲国产精品福利| 久久精品国产亚洲高清剧情介绍| 国产精品对白刺激久久久| 在线视频成人| 欧美三级乱码| 欧美激情亚洲|