日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做INFSCI 0510、代寫 java/Python 編程

時間:2024-05-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework: Kernel PCA for Linearly-Inseparable Dataset
INFSCI 0510 Data Analysis, Department of Computer Science, SCUPI Spring 2024
This coursework contains coding exercises and text justifications. Please read the instructions carefully and follow them step-by-step. For submission instructions, please read the last section. If you have any queries regarding the understanding of the coursework sheet, please contact the TAs or the course leader. Due on: 23:59 PM, Wednesday, June 5th.
PCA
In our lectures, we introduced principle component analysis (PCA). Given a dataset X ∈ Rd×n with n data points of d dimensions, we are interested to project X onto a low-dimensional subspace, where the basis vectors U ∈ Rd×k are the principle components (PC), computed as follows:
X􏰀 = U ΣV T , (1) where X􏰀 is the standardised version of X with zero-mean. Eq. (1) is called singular value decompo-
sition (SVD).
Based on the PC matrix U, the projection for low-dimensional features Z ∈ Rk×n, with k < d, is presented as:
Z = UT X. (2) Compared with X, these low-dimensional features Z carry substantial information within less
dimensionality, therefore favored for the learning task.
Kernel Trick
Besides the PCA process for dimensionality reduction, we also introduced dimensionality expan- sion in our lectures by change of basis. For a linearly-inseparable dataset X ∈ Rd×n, it is possible to find a hyperplane for the classification task with 0 error by transforming X onto a high-dimensional superspace. In this case, the classification task will be conducted with the transformed data, repre- sented as φ(X) ∈ RD×n with D > d, φ(·) denotes the transformation function. By projecting the hyperplane back to the original space, we can produce a non-linear solution for the classification task.
However, recall from the lectures, such a change of basis may be computational expensive. To solve this issue, we introduced the kernel trick. Specifically, to perform the classification task for the projected dataset φ(X), we can use a kernel function K(·,·) that computes the dot product ⟨φ(xi),φ(xj)⟩ of any two projected samples xi and xj, presented as:
K(xi,xj) = ⟨φ(xi),φ(xj)⟩, (3)
where kernel function K(·,·) computes the dot product with the inputs xi and xj. Hence, such a dot product is calculated without explicitly computing the computational-expensive transformation φ(X). There are many kernel functions to use, in this coursework, we will focus on two types of kernels:
  1
􏰀

1. Homogeneous Polynomial kernel : K(xi,xj) = (⟨xi,xj⟩)p, where p > 0 is the polynomial degree.
2. Radial Basis Function (RBF) kernel: also called Gaussian kernel, K(xi,xj) = e−γ∥xi−xj∥2, where
γ = 1 and σ is the width or scale of a Gaussian distribution centered at x .
Kernel PCA
2σ2
j
Kernel PCA is a combined technique of PCA and the kernel trick, where we are still interested in using the PCA process to find the features Z ∈ Rk×n. However, the dimensionality of these features are now ranging from 1 to a large number D, i.e., k ∈ [1, D). The reason is because we first transformed X to a superspace φ(X) ∈ RD×n, then applying the PCA process to produce the features.
Also, we would like to avoid the explicit computation of the high-dimensional φ(X), which can be done by involving the kernel function K(·,·) into the PCA process. Such a kernel PCA process of producing Z is not linear anymore, allowing us to find non-linear solution for classification task, which is very useful when solving a classification task on a linearly-inseparable dataset X ∈ Rd×n with a low dimensionality, e.g., d = 2.
Dataset and Task Summary
The dataset for this coursework is the Circles Dataset, a synthetic dataset widely used to design and test models. The dataset contains 500 samples varying in two classes, i.e., X ∈ R2×500. To load the dataset, please download the Circles.data file from the Blackboard. The data file is constructed by three columns of data: the first two columns represent the two features of X, while the third column denotes the class labels, i.e., class 1 or class 2. Try plot the dataset and see how the two-class samples are distributed.
The task in this course work is using kernel PCA to transform the original dataset X ∈ R2×500 into a linearly-separable dataset Z ∈ Rk×500 with the minimum number of PCs, i.e., a minimum k value. To confirm if the dataset can be made linearly separable, we will use a very simple classification model, decision stump. The whole process can be divided into the following steps:
1. Choose a kernel function with appropriate hyperparameter value.
2. Apply kernel PCA on the original set X ∈ R2×500 to generate the transformed data Z ∈ Rk×500.
3. Find the minimum number of PCs, i.e., the minimum k value required to classify all data points
in Z correctly, using only one decision stump.
The tasks to complete are elaborated into different exercises, which will be detailed in following sections. When solving these tasks, make sure to maintain the Circles.data file under the same directory with your code file.
Exercises **3
Exercise 1 (35 marks) :
• Please use equations to mathematically prove how we can apply PCA on φ(X) without explicitly computing φ(X). (20 marks)
• Please use equations to mathematically prove how to compute the transformed dataset Z, i.e., the projection, without linking to any computation of φ(X). (15 marks)
Hint: recall how SVD works with φ(X), then link the SVD with the result of the kernel function, i.e., the kernel matrix K.
2

Note: don’t forget the standardisation procedure before the PCA process.
Important: the full marks can be awarded to the following Exercise 2 and Exercise 3 only if the answers to Exercise 1 are correct, otherwise, we will only award 50% of the total marks to any following tasks that are related to the theories in Exercises 1, because we regard your code or any discussions in these tasks as those built from wrong theories, although they may be correct inside the task range.
Exercise 2 (30 marks) :
Based on the theories from Exercise 1, choose the kernel (Homogeneous Polynomial or Gaussian) and the corresponding hyperparameters that can be used in conjunction with PCA to produce a linearly-separable dataset Z. Implement the kernel PCA, and answer several questions to justify your selection, as follows:
• Provide the code snippet with results to show your correct implementation of kernel PCA. (15 marks)
• What kind of projection can be achieved with the Homogeneous Polynomial kernel and with the Gaussian kernel? (5 marks)
• What is the influence of the degree p in a Homogeneous Polynomial kernel? (5 marks)
• How can one relate the Gaussian width σ to the data available? (5 marks)
Note: don’t forget the standardisation procedure before the PCA process.
Note: you can use cross-validation to select hyperparameters, however, make sure that the selected
ones are the most appropriate ones for the whole dataset.
Important: there are ready-to-use implementations of kernel PCA in Python. You must imple- ment your own solution and must not use any such libraries, otherwise, 0 marks will be given to any related tasks. Your code from assignment 4 can be used as a starting point to complete this coursework. More specifically:
Libraries that implement basic operations can be used in the coursework, for example: - mean, variance, centre data
- plotting
- matrix and vector multiplications, inverse, transpose
- computation of distance, divergence, or accuracy - singular value decomposition
Libraries that implement the main solutions operations must not be used in the coursework: - the linear version of PCA
- the non-linear version of PCA, i.e., kernel PCA
Exercise 3 (30 marks) :
After the kernel PCA implementation and hyperparameter reasoning from Exercise 1, the next step is to build one decision stump that correctly classify all the samples in the transformed dataset Z. Please complete the following tasks:
• Determine the minimum number of PCs required to classify all the samples in the dataset Z correctly, using one decision stump. (10 marks)
• Please justify the metric used to fit the decision stump. (5 marks)
• Provide the splitting rule and the accuracy of the decision stump. (5 marks)
• Plot the visualization of the input data of the decision stump, i.e., the **D features. (5 marks)
• For the transformed dataset Z, if the minimum number of PCs satisfies k ≤ 3, plot the visu-
alization of the transformed dataset Z. Otherwise (if k > 3), simply state the incapability of providing the visualization by providing your results of k > 3. (5 marks)
3

Extras (5 marks) :
Your code (.ipynb jupyter file) should be clearly and logically structured, any answers or discussions to the exercises should be well-written and adequately proofread before submission. A total of 5 marks are for the organization and explanation (comments) of your code, also for the organization and presentation of your answers or discussions in the report (.pdf file).
Submission
Your submission will include two files:
1. A report file (.pdf) with all your answers or any discussions of all the tasks in Exercise **3.
2. A jupyter notebook file (.ipynb file) with all your code and appropriate explanations to
understand your code.
Our marking process may help you structure your report and code:
1. For each task in Exercise **3, we will look for answers from your report. Therefore, please answer all the tasks in your report. For any tasks that require any code snippets, please also attach them in your report, which can be done through screenshots.
2. We will also run your jupyter notebook and see if your code can provide results that align with the answers in your report, especially. When checking for the last time about whether your code can generate the correct results, please remember to Restart Kernel and Clear Outputs of All Cells. As we will do the same to examine your code.
3. Note that when running your code, we will place the Circles.data file under the same direc- tory with your jupyter notebook file. Hence, please do the same when testing your code, and avoid using any absolute path in your code.
In the end, please compress the two files into a .zip file, and name the .zip file as: ”[CW]-[Session Number]-[Student ID]-[Your name]”
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

掃一掃在手機打開當前頁
  • 上一篇:中國人在越南遣返回國原因有哪些(越南被遣返怎么處理)
  • 下一篇:長沙旅行社代辦越南簽證多少錢(怎么選擇好的旅行社)
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        性欧美暴力猛交另类hd| 一区二区三区欧美激情| 欧美成年人网| 国产亚洲一级高清| 久久精品国产2020观看福利| 国产精品美女久久| 国产精品日韩一区二区三区| 亚洲成在线观看| 国产欧美日韩免费看aⅴ视频| 老牛国产精品一区的观看方式| 在线日韩av| 久久夜精品va视频免费观看| 国产乱子伦一区二区三区国色天香| 国内外成人在线视频| 国产一区二区成人久久免费影院| 亚洲一区二区视频在线| 久久精品亚洲精品| 亚洲午夜精品国产| 欧美极品在线播放| 在线播放亚洲| 欧美主播一区二区三区美女 久久精品人| 亚洲综合色视频| 欧美岛国激情| 国产精品高清一区二区三区| 性欧美1819sex性高清| 亚洲成人直播| 欧美紧缚bdsm在线视频| 欧美日韩精品一本二本三本| 韩国一区电影| 国产亚洲成人一区| 亚洲一区二区在线观看视频| 久久综合成人精品亚洲另类欧美| 免费在线观看精品| 午夜国产欧美理论在线播放| 欧美一区二区在线观看| 亚洲午夜精品一区二区三区他趣| 欧美在线视频网站| 亚洲视频在线免费观看| 欧美1级日本1级| 99re热这里只有精品免费视频| 国产精品亚洲аv天堂网| 在线成人h网| 亚洲国产日韩在线一区模特| 久久精品国产免费观看| 欧美日本不卡高清| 欧美午夜精彩| 中文av字幕一区| 欧美日韩一区二区三区视频| 国产精品国内视频| 免费一级欧美在线大片| 老妇喷水一区二区三区| 国产亚洲综合精品| 欧美偷拍一区二区| 激情一区二区三区| 国产精品久久久久毛片软件| 国产精品啊v在线| 精品51国产黑色丝袜高跟鞋| 国产日本精品| 亚洲欧美一区二区原创| 亚洲免费播放| 国产精品久久久久久妇女6080| 午夜精品久久久久影视| 在线观看国产精品网站| 久久精品一本久久99精品| 亚洲国产精品电影在线观看| 国产精品欧美经典| 激情久久影院| 国精产品99永久一区一区| 国产精品theporn88| 一区视频在线| 欧美一区二区免费| 国产精品亚洲аv天堂网| 每日更新成人在线视频| 久久久久国内| 欧美在线观看你懂的| 国产一区在线播放| 免费不卡在线观看av| 亚洲小说区图片区| 国产精品久久久久久久一区探花| 欧美日韩国产不卡在线看| **欧美日韩vr在线| 亚洲欧美日韩在线| 免费不卡在线观看av| 欧美日韩在线不卡一区| 尤物99国产成人精品视频| 久久超碰97人人做人人爱| 国产深夜精品福利| 日韩视频在线你懂得| 欧美性jizz18性欧美| 久久精品视频在线播放| 国产欧美一区二区三区另类精品| 99精品视频免费观看视频| 国产嫩草一区二区三区在线观看| 欧美性生交xxxxx久久久| 久久免费精品视频| 欧美日韩另类丝袜其他| 久久精品国产综合| 午夜精品国产更新| 99视频热这里只有精品免费| 欧美日韩一区二区三区高清| 欧美国产综合视频| 亚洲日本一区二区| 精品成人一区二区三区| 欧美成人资源网| 亚洲天堂网站在线观看视频| 国产日韩欧美日韩大片| 亚洲精品123区| 国产欧美精品日韩精品| 亚洲午夜精品久久久久久app| 欧美深夜影院| 欧美成人视屏| 亚洲一区二区视频在线观看| 在线观看欧美日韩国产| 国精品一区二区| 国产精品欧美经典| 久久青草欧美一区二区三区| 欧美日韩一区二区三| 海角社区69精品视频| 亚洲欧美日韩一区二区| 亚洲欧美制服中文字幕| 国产精品欧美久久| 欧美激情1区2区3区| 国产欧美一区二区三区久久| 久久久一区二区三区| 国产伦精品一区二区三区高清版| 久久精品国产一区二区电影| 国产手机视频一区二区| 亚洲午夜未删减在线观看| 亚洲女ⅴideoshd黑人| 亚洲欧洲日产国产综合网| 亚洲高清视频中文字幕| 亚洲精品一区二区三区在线观看| 玖玖综合伊人| 欧美午夜激情视频| 99国内精品久久久久久久软件| 久久亚洲精品伦理| 亚洲经典一区| 欧美成人性生活| 欧美一区二区在线免费观看| 在线观看国产精品淫| 性欧美videos另类喷潮| 午夜精品福利一区二区蜜股av| 国产精品国产a级| 久久久999国产| 久久看片网站| 午夜国产精品视频| 在线观看成人av| 模特精品裸拍一区| 亚洲欧美日韩国产一区二区三区| 狠狠入ady亚洲精品| 国产精品第2页| 国产日韩在线看片| 在线观看亚洲一区| 亚洲日本中文字幕| 亚洲精品中文字幕在线| 99精品视频免费观看视频| 亚洲天天影视| 欧美一区二区三区免费看| 欧美成人精品高清在线播放| 国产精品久久久久aaaa九色| 欧美电影免费网站| 欧美日本网站| 亚洲第一精品夜夜躁人人爽| 亚洲国内在线|