日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫COMPSCI369、代做Python編程設計

時間:2024-05-10  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMPSCI369 - S1 2024
Assignment 3
Due date: See Canvas
Instructions
This assignment is worth 7.5% of the final grade. It is marked out of 75 points.
Provide a solution as a Python notebook and html with output. Your solution should include well
documented code with the calls to reproduce your results.
Include markdown cells with explanation of the results for each question.
Submit the ipynb and html to Canvas:
• the .ipynb file with outputs from the executed code
• a .html version of the notebook with all outputs of executed code showing. (To get this
format, export from the notebook viewer or use nbconvert.)
Within the notebook, set the random seed to some integer of your choosing (using random.seed)
so that the marker can recreate the same output that you get. You can reset the seed before each
question if you like.
Question 1: Simulating random variables and exploring relationships between distributions (20 Points)
(a) Using the inversion sampling technique described in Section 9.2 of the workbook, write a method rand exp that takes a rate parameter λ as input and
produces as output an exponentially distributed random variable with rate parameter λ. Use random.random() to generate uniform random numbers. (4
marks)
(b) Demonstrate your rand exp is correct by comparing the mean and variance
of the output to theoretical values, and also by comparing the output of your
method to a library method. (4 marks)
(c) Use rand exp to write a method rand poiss that takes a parameter λ as input
and produces as output a Poisson distributed random variable with parameter
λ. (4 marks)
(d) Use rand exp to write a method rand gamma that takes an integer parameter
k and rate parameter θ as input and produces as output a gamma distributed
random variable with parameters k and θ. (4 marks)
(e) Explain why your rand gamma method lacks the generality you would typically
want for simulating gamma distributed random variables. (4 marks)
1
Question 2: Simulating outbreaks (55 Points)
A standard model in epidemiology is the SIR model of infectious disease spread. It
has a population of N hosts being divided into 3 compartments, so is known as a
compartmental model:
• the S compartment of those who are susceptible to the disease
• the I compartment of those who are infectious with the disease
• the R compartment of those who are recovered from the disease and now immune (or, more generally, those who are removed from the epidemic through
recovery with immunity, or isolation, or death, etc).
We assume that S + I + R = N.
The model can be deterministic or stochastic. We consider the stochastic version
here. Times between all events are exponentially distributed with the following rates
which depend on the current state of the outbreak, assumed to be (S, I, R):
• the rate of transmissions is βSI/N and the new state is (S − 1, I + 1, R), and
• the rate of recoveries is γI and the new state is (S, I − 1, R + 1).
You can use any functions from the random module that you like for this question.
Probably the only one you need is random.expovariate.
(a) At what point will the epidemic finish? (2 marks)
(b) Write method sim SIR that takes as inputs N, I0, β, γ and produces as output
a list of the event times and the number susceptible, infected and recovered at
each time point. All outbreaks start at time t = 0 with S0 = N −I0. (8 marks)
(c) Run a simulation with N = 1000, I0 = 10, β = 3, γ = 2 and plot the number
infected through time. (4 marks)
(d) Run an experiment and report the results to approximate the probability that
a large outbreak occurs using the same parameters as above but with only one
initial infected. What has usually happened if there is no large outbreak? (6
marks)
(e) The reproduction number R0 = β/γ of the epidemic is the mean number of
transmissions by a single infected in an otherwise susceptible population (Note
there is a bit of a notation clash: we are not referring to the number of recovered
individuals at time 0 in this case.) Using the same parameters as in part (c)
but allowing β to vary, select five values of R0 above and below 1 to explore
whether or not you get an outbreak. Report and explain your results. (6
marks)
(f) Suppose now that the infectious period is fixed, so that hosts are infectious
for exactly 1 time unit. Is the process still Markov? How would you go about
writing code to simulate such an epidemic? (You do not have to actually write
the code here.) (4 marks)
2
(g) Another common model breaks the infectious period up into m sub-periods,
I1, I2, . . . , Im so is an SI1I2 . . . ImR model. Assuming the amount of time each
individual spends in compartment Ij
is exponential with rate γ, what is the
distribution of the total time spent in I1 to Im? (4 marks)
(h) Drawing on what you know about infections, explain why neither a fixed length
nor an exponential distributed infectious period is a great model and why the
m sub-period model may be preferable. What computational advantage does
this formalism have that makes it easier to work with than some arbitrary
distribution for the infection period? (6 marks)
(i) Consider another compartmental model where there is no immunity to an infection so individuals recover straight back into a susceptible state and can get
infected again. This is know as birth death or SIS process. If we look at only
the type of events and ignore the waiting times between them, this process can
be described as a simple Markov chain. If the population size were fixed at
N = 5, and using transition rates (S, I) → (S − 1, I + 1) at rate βSI/N and
(S, I) → (S + 1, I − 1) at rate γI, write down the transition matrix for the
chain. (5 marks)
(j) Implement an SIS process which takes inputs N, I0, β, γ, t, where t is the number
of iterations (i.e., infection or recovery events) the simulation runs for. (6
marks)
(k) Run a simulation study using the SIS simulator with N = 1000, I0 = 10, β =
3, γ = 2 to determine the long term behaviour of this process. Discuss your
results. (4 marks)

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp














 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓碧瑤到務宿多久 宿務的景點有什么
  • 下一篇:代寫CPT204、代做Java編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        一本色道久久综合狠狠躁的推荐| 亚洲视频播放| 国产日韩精品一区二区浪潮av| 免费久久99精品国产自在现线| 国产农村妇女精品| 欧美三级特黄| 久久精品五月婷婷| 欧美日韩国产在线看| 久久欧美肥婆一二区| 一区二区三区欧美| 国产精品久久午夜夜伦鲁鲁| 国产毛片一区| 亚洲一区二区免费视频| 麻豆9191精品国产| 国产一区亚洲一区| 欧美日韩一区二区三区四区在线观看| 欧美日韩国产丝袜另类| 久久夜精品va视频免费观看| 久久久999| 欧美日韩一区在线播放| 亚洲高清视频的网址| 欧美一区观看| 欧美中文字幕视频在线观看| 欧美精品黄色| 免费美女久久99| 久久国产欧美精品| 欧美影院成年免费版| 亚洲国产一区二区a毛片| 正在播放欧美视频| 在线精品国产欧美| 国产精品成人一区二区| 香蕉久久夜色精品国产使用方法| 亚洲激情电影中文字幕| 嫩草国产精品入口| 亚洲美女视频在线免费观看| 9人人澡人人爽人人精品| 久久精品久久99精品久久| 国产三级欧美三级日产三级99| 亚洲自拍偷拍福利| 一本大道久久a久久精二百| 亚洲一区欧美二区| 欧美电影免费观看高清完整版| 国产精品乱码久久久久久| 亚洲一区二区毛片| 一本色道久久综合亚洲精品不| 欧美影院一区| 欧美一级免费视频| 欧美伊人久久大香线蕉综合69| 永久免费视频成人| 在线播放国产一区中文字幕剧情欧美| 久久亚洲综合色| 欧美韩国在线| 亚洲国产精品小视频| aa日韩免费精品视频一| 国产精品久久久久影院色老大| 欧美日韩精品一区| 国产精品视频一区二区高潮| 久久精品伊人| 欧美性一区二区| 国内精品久久久久国产盗摄免费观看完整版| 日韩午夜在线观看视频| 香蕉成人啪国产精品视频综合网| 欧美国产日韩一区二区三区| 亚洲春色另类小说| 亚洲综合清纯丝袜自拍| 国产日韩欧美在线看| 亚洲久久一区二区| 在线观看欧美| 亚洲毛片一区二区| 在线视频你懂得一区二区三区| 欧美精品二区三区四区免费看视频| 亚洲已满18点击进入久久| 国产精品一区二区在线观看网站| 国产日韩精品视频一区二区三区| 亚洲第一区色| 日韩亚洲一区在线播放| 国产情侣久久| 亚洲欧美制服中文字幕| 91久久久久久久久久久久久| 亚欧美中日韩视频| 麻豆视频一区二区| 欧美日韩三区| 亚洲国产女人aaa毛片在线| 欧美精品日韩一区| 久久久亚洲人| 国产午夜精品一区二区三区欧美| 国产真实精品久久二三区| 在线午夜精品| 国产一区深夜福利| 亚洲电影有码| 久久久人成影片一区二区三区| 国产丝袜一区二区| 亚洲精品视频啊美女在线直播| 欧美一级片在线播放| 欧美中文字幕视频在线观看| 欧美激情一级片一区二区| 伊人影院久久| 巨胸喷奶水www久久久免费动漫| 欧美成黄导航| 欧美日韩免费精品| 一本一本大道香蕉久在线精品| 国产亚洲女人久久久久毛片| 老鸭窝亚洲一区二区三区| 亚洲日本黄色| 欧美成人免费在线视频| 欧美日韩一区二区欧美激情| 国产精品区一区二区三区| 亚洲欧美日韩在线高清直播| 在线精品亚洲一区二区| 亚洲免费观看视频| 欧美成人四级电影| 欧美一级久久| 一区视频在线播放| 久久天天躁夜夜躁狠狠躁2022| 美女图片一区二区| 国产精品99久久久久久久女警| 国产精品亚洲一区二区三区在线| 久久一区二区三区av| 久久综合九色| 国产精品亚发布| 欧美理论在线| 午夜精品国产精品大乳美女| 国产精品亚洲美女av网站| 欧美日韩国产不卡| 国产午夜精品福利| 精品成人在线观看| 亚洲欧美日韩系列| 欧美日韩成人免费| 亚洲人成网站影音先锋播放| 欧美一区二区成人| 亚洲国产精品久久久久久女王| 免费亚洲电影在线| 在线不卡免费欧美| 欧美一区在线直播| 久久嫩草精品久久久久| 午夜精品一区二区三区四区| 91久久精品视频| 欧美国产高潮xxxx1819| 国产精品久久久久高潮| 国产精品欧美一区二区三区奶水| 亚洲福利久久| 欧美成人国产| 亚洲丰满少妇videoshd| 国产女精品视频网站免费| 亚洲精品欧洲精品| 国产精品国产精品国产专区不蜜| 伊人春色精品| 久久久精品国产一区二区三区| 久久av老司机精品网站导航| 欧美女激情福利| 亚洲男同1069视频| 国产视频精品va久久久久久| 欧美精品一区在线观看| 亚洲一区二区欧美日韩| 韩国精品在线观看| 欧美电影免费观看高清完整版| 欧美日韩国产首页| 一区二区冒白浆视频| 欧美二区乱c少妇| 狂野欧美激情性xxxx欧美| 国产日韩精品在线| 亚洲影院污污.| 亚洲综合色丁香婷婷六月图片| 亚洲网站在线|