日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫COMPSCI369、代做Python編程設計

時間:2024-05-10  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMPSCI369 - S1 2024
Assignment 3
Due date: See Canvas
Instructions
This assignment is worth 7.5% of the final grade. It is marked out of 75 points.
Provide a solution as a Python notebook and html with output. Your solution should include well
documented code with the calls to reproduce your results.
Include markdown cells with explanation of the results for each question.
Submit the ipynb and html to Canvas:
• the .ipynb file with outputs from the executed code
• a .html version of the notebook with all outputs of executed code showing. (To get this
format, export from the notebook viewer or use nbconvert.)
Within the notebook, set the random seed to some integer of your choosing (using random.seed)
so that the marker can recreate the same output that you get. You can reset the seed before each
question if you like.
Question 1: Simulating random variables and exploring relationships between distributions (20 Points)
(a) Using the inversion sampling technique described in Section 9.2 of the workbook, write a method rand exp that takes a rate parameter λ as input and
produces as output an exponentially distributed random variable with rate parameter λ. Use random.random() to generate uniform random numbers. (4
marks)
(b) Demonstrate your rand exp is correct by comparing the mean and variance
of the output to theoretical values, and also by comparing the output of your
method to a library method. (4 marks)
(c) Use rand exp to write a method rand poiss that takes a parameter λ as input
and produces as output a Poisson distributed random variable with parameter
λ. (4 marks)
(d) Use rand exp to write a method rand gamma that takes an integer parameter
k and rate parameter θ as input and produces as output a gamma distributed
random variable with parameters k and θ. (4 marks)
(e) Explain why your rand gamma method lacks the generality you would typically
want for simulating gamma distributed random variables. (4 marks)
1
Question 2: Simulating outbreaks (55 Points)
A standard model in epidemiology is the SIR model of infectious disease spread. It
has a population of N hosts being divided into 3 compartments, so is known as a
compartmental model:
• the S compartment of those who are susceptible to the disease
• the I compartment of those who are infectious with the disease
• the R compartment of those who are recovered from the disease and now immune (or, more generally, those who are removed from the epidemic through
recovery with immunity, or isolation, or death, etc).
We assume that S + I + R = N.
The model can be deterministic or stochastic. We consider the stochastic version
here. Times between all events are exponentially distributed with the following rates
which depend on the current state of the outbreak, assumed to be (S, I, R):
• the rate of transmissions is βSI/N and the new state is (S − 1, I + 1, R), and
• the rate of recoveries is γI and the new state is (S, I − 1, R + 1).
You can use any functions from the random module that you like for this question.
Probably the only one you need is random.expovariate.
(a) At what point will the epidemic finish? (2 marks)
(b) Write method sim SIR that takes as inputs N, I0, β, γ and produces as output
a list of the event times and the number susceptible, infected and recovered at
each time point. All outbreaks start at time t = 0 with S0 = N −I0. (8 marks)
(c) Run a simulation with N = 1000, I0 = 10, β = 3, γ = 2 and plot the number
infected through time. (4 marks)
(d) Run an experiment and report the results to approximate the probability that
a large outbreak occurs using the same parameters as above but with only one
initial infected. What has usually happened if there is no large outbreak? (6
marks)
(e) The reproduction number R0 = β/γ of the epidemic is the mean number of
transmissions by a single infected in an otherwise susceptible population (Note
there is a bit of a notation clash: we are not referring to the number of recovered
individuals at time 0 in this case.) Using the same parameters as in part (c)
but allowing β to vary, select five values of R0 above and below 1 to explore
whether or not you get an outbreak. Report and explain your results. (6
marks)
(f) Suppose now that the infectious period is fixed, so that hosts are infectious
for exactly 1 time unit. Is the process still Markov? How would you go about
writing code to simulate such an epidemic? (You do not have to actually write
the code here.) (4 marks)
2
(g) Another common model breaks the infectious period up into m sub-periods,
I1, I2, . . . , Im so is an SI1I2 . . . ImR model. Assuming the amount of time each
individual spends in compartment Ij
is exponential with rate γ, what is the
distribution of the total time spent in I1 to Im? (4 marks)
(h) Drawing on what you know about infections, explain why neither a fixed length
nor an exponential distributed infectious period is a great model and why the
m sub-period model may be preferable. What computational advantage does
this formalism have that makes it easier to work with than some arbitrary
distribution for the infection period? (6 marks)
(i) Consider another compartmental model where there is no immunity to an infection so individuals recover straight back into a susceptible state and can get
infected again. This is know as birth death or SIS process. If we look at only
the type of events and ignore the waiting times between them, this process can
be described as a simple Markov chain. If the population size were fixed at
N = 5, and using transition rates (S, I) → (S − 1, I + 1) at rate βSI/N and
(S, I) → (S + 1, I − 1) at rate γI, write down the transition matrix for the
chain. (5 marks)
(j) Implement an SIS process which takes inputs N, I0, β, γ, t, where t is the number
of iterations (i.e., infection or recovery events) the simulation runs for. (6
marks)
(k) Run a simulation study using the SIS simulator with N = 1000, I0 = 10, β =
3, γ = 2 to determine the long term behaviour of this process. Discuss your
results. (4 marks)

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp














 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓碧瑤到務宿多久 宿務的景點有什么
  • 下一篇:代寫CPT204、代做Java編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        在线一区日本视频| 久久午夜影视| 99亚洲一区二区| 国产精品成人久久久久| 欧美日韩美女一区二区| 99ri日韩精品视频| 亚洲少妇一区| 久久国内精品视频| 尤物九九久久国产精品的分类| 欧美激情一区二区三区四区| 欧美日韩一区在线观看视频| 久久久久国产一区二区三区| 精品999在线观看| 国产日韩欧美高清免费| 国产精品久线观看视频| 国产综合精品一区| 国产精品视频大全| 老司机精品福利视频| 欧美日韩极品在线观看一区| 欧美日韩一区二区三区四区在线观看| 亚洲欧洲日本专区| 欧美一区二区高清在线观看| 欧美一级在线亚洲天堂| 国产精品免费网站在线观看| 欧美777四色影视在线| 亚洲国产日韩欧美在线动漫| 国产精品美女一区二区在线观看| 国产精品成人aaaaa网站| 久久久久成人精品| 欧美多人爱爱视频网站| 欧美精品在线免费| 亚洲在线成人精品| 国产日韩欧美高清免费| 欧美一区二区三区免费大片| 久久久久看片| 国产精品久久久久久久一区探花| 国内精品伊人久久久久av影院| 国产精品视频大全| 欧美日韩亚洲视频一区| 欧美另类69精品久久久久9999| 中文av字幕一区| 亚洲一区二区三区乱码aⅴ蜜桃女| 亚洲国产一区二区在线| 欧美二区视频| 久久精品亚洲乱码伦伦中文| 欧美成人午夜视频| 国产精品yjizz| 欧美日本视频在线| 欧美精品一区三区| 欧美人与禽猛交乱配| 一区二区三区色| 免费在线欧美黄色| 国产一区二区欧美日韩| 欧美亚洲一级片| 亚洲在线观看免费视频| 国产精品久久久久久av福利软件| 日韩一区二区精品视频| 国产精品videosex极品| 99国产精品久久久久久久成人热| 午夜精品在线视频| 欧美jizzhd精品欧美喷水| 国产精自产拍久久久久久| 欧美午夜性色大片在线观看| 久久在精品线影院精品国产| 狠狠狠色丁香婷婷综合激情| 亚洲午夜激情在线| 久久精品亚洲一区二区| 有坂深雪在线一区| 国产欧美高清| 午夜在线a亚洲v天堂网2018| 国产日韩欧美一区在线| 国产精品影片在线观看| 欧美日本中文| 欧美激情综合色| 毛片av中文字幕一区二区| 一区二区视频免费完整版观看| 国产午夜久久| 欧美精品日韩综合在线| 在线成人激情视频| 美女诱惑黄网站一区| 女人香蕉久久**毛片精品| 久久精品人人做人人爽电影蜜月| 黄色av成人| 久久免费视频网| 欧美在线二区| 欧美久久综合| 蜜臀av在线播放一区二区三区| 久久亚洲私人国产精品va媚药| 在线观看亚洲精品| 午夜精品一区二区三区电影天堂| 欧美日韩一区二区三区在线观看免| 国外成人性视频| 国内自拍一区| 久久久久久久综合色一本| 久久成人精品视频| 亚洲第一综合天堂另类专| 久久精品99久久香蕉国产色戒| 99精品视频免费观看| 亚洲日本在线视频观看| 久久久久久网址| 午夜激情亚洲| 欧美性生交xxxxx久久久| 最近中文字幕日韩精品| 亚洲一级免费视频| 在线观看日韩国产| 久久精品国产免费| 国产精自产拍久久久久久蜜| 欧美日韩视频不卡| 欧美天堂在线观看| 欧美亚洲一区| 亚洲精品国产精品国产自| 女同一区二区| 欧美成人激情在线| 国产精品成人aaaaa网站| 国产精品毛片在线| 最新国产成人在线观看| 久久久久久有精品国产| 欧美电影专区| 国产精品xnxxcom| 欧美日韩成人在线| 亚洲一区二区三区高清不卡| 亚洲一区自拍| 久久久久久久久伊人| 欧美伊人影院| 国产婷婷成人久久av免费高清| 午夜国产一区| 欧美区一区二区三区| 亚洲精品一区二区三区福利| 欧美日韩在线播放三区四区| 欧美日韩精品免费看| 国产亚洲aⅴaaaaaa毛片| 国产欧美日韩三区| 亚洲精品国产精品国自产在线| 久久久久国产精品一区二区| 久久这里有精品视频| 亚洲日本免费电影| 欧美日韩蜜桃| 精品不卡一区二区三区| 欧美一区二区三区久久精品茉莉花| 亚洲激情社区| 久久久久国产精品麻豆ai换脸| 国产一区二区三区高清在线观看| 亚洲美女在线看| 亚洲女人天堂成人av在线| 久久av在线看| 欧美一区二区私人影院日本| av成人免费在线| 欧美黄色成人网| 国产日韩欧美视频在线| 欧美日韩在线视频观看| 欧美丝袜第一区| 欧美激情一区在线| 一本色道久久综合一区| 国产精品久久久久久五月尺| 国内精品久久久久久久影视麻豆| 老司机67194精品线观看| 亚洲欧美日本精品| 久久在线免费观看视频| 在线视频欧美日韩精品| 久久久亚洲影院你懂的| 亚洲精品久久嫩草网站秘色| 欧美午夜无遮挡| 韩国av一区二区三区四区| 久久久精品视频成人|