日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP52715 代做、代寫 Python設計編程

時間:2024-04-22  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP52715 Deep Learning for Computer Vision & Robotics (Epiphany Term, 202**4)
Summative Coursework - 3D PacMan
Coursework Credit - 15 Credits Estimated Hours of Work - 48 Hours Submission Method - via Ultra
Release On: February 16 2024 (2pm UK Time)
Due On: March 15 2024 (2pm UK Time)
– All rights reserved. Do NOT Distribute. –
  Compiled on November 16, 2023 by Dr. Jingjing Deng

1
1.
2.
3.
4.
5.
6.
Coursework Specification
This coursework constitutes **% of your final mark for this module, where there are two mandatory tasks: Python programming and report writing. You must upload your work to Ultra before the deadline specified on the cover page.
The other 10% will be assessed separately based on seminar participation. There are 3 seminar sessions in total, the mark awarding rule is as such: (A) participating in none=0%, (B) participating in 1 session=2%, (C) participating in 2 sessions=5%, (D) participating in all sessions=10%.
This coursework is to be completed by students working individually. You should NOT ask for help from your peers, lecturer, and lab tutors regarding the coursework. You will be assessed on your code and report submissions. You must comply with the University rules regarding plagiarism and collusion. Using external code without proper referencing is also considered as breaching academic integrity.
Code Submission: The code must be written in Jupyter Notebook with appropriate comments. For constructing deep neural network models, use PyTorch1 library only. Zip Jupyter Note- book source files (*.ipynb), your dataset (if there is any new), pretrained models (*.pth), and a README.txt (code instruction) into one single archive. Do NOT include the original “Pac- Man Helper.py”, “PacMan Helper Demo.ipynb”, “PacMan Skeleton.ipynb”, “TrainingImages.zip”, “cloudPositions.npy” and “cloudColors.npy” files. Submit a single Zip file to GradeScope - Code entry on Ultra.
Report Submission: The report must NOT exceed 5 pages (including figures, tables, references and supplementary materials) with a single column format. The minimum font size is 11pt (use Arial, Calibri, Times New Roman only). Submit a single PDF file to GradeScope - Report entry on Ultra.
Academic Misconduct is a major offence which will be dealt with in accordance with the University’s General Regulation IV – Discipline. Please ensure you have read and understood the University’s regulations on plagiarism and other assessment irregularities as noted in the Learning and Teaching Handbook: 6.2.4: Academic Misconduct2.
            Figure 1: The mysterious PhD Lab.
 1 https://pytorch.org/
2 https://durhamuniversity.sharepoint.com/teams/LTH/SitePages/6.2.4.aspx
1

2 Task Description (**% in total)
2.1 Task 1 - Python Programming (40% subtotal)
In this coursework, you are given a set of 3D point-clouds with appearance features (i.e. RGB values). These point-clouds were collected using a Kinect system in a mysterious PhD Lab (see Figure.1). Several virtual objects are also positioned among those point clouds. Your task is to write a Python program that can automatically detect those objects from an image and use them as anchors to collect the objects and navigate through the 3D scene. If you land close enough to the object it will be automatically captured and removed from the scene. A set of example images that contain those virtual objects are provided. These example images are used to train a classifier (basic solution) and an object detector (advanced solution) using deep learning approaches in order to locate the targets. You are required to attempt both basic and advance solutions. “PacMan Helper.py” provides some basic functions to help you complete the task. “PacMan Helper Demo.ipynb” demonstrates how to use these functions to obtain a 2D image by projecting 3D point-clouds onto the camera image-plane, and how to re-position and rotate the camera etc. All the code and data are available on Ultra. You are encouraged to read the given source codes, particularly “PacMan Skeleton.ipynb”.
Detection Solution using Basic Binary Classifier (10%). Implement a deep neural network model that can classify the image patch into two categories: target object and background. You can use the given images to train your neural network. It then can be used in a sliding window fashion to detect the target object in a given image.
Detection Solution using Advance Object Detector (10%). Implement a deep neural network model that can detect the target object from the image. You may manually or automatically create your own dataset for training the detector. The detector will predict bounding boxes that contain the object from a given image.
Navigation and Collection Task Completion (10%). There are 11 target objects in the scene. Use the trained models to perform scene navigation and object collection. If you land close enough to the object it will be automatically captured and removed from the scene. You may compare the performance of both models.
Visualisation, Coding Style, and Readability (10%). Visualise the data and your experimental results wherever is appropriate. The code should be well structured with sufficient comments for the essential parts to make the implementation of your experiments easy to read and understand. Check the “Google Python Style Guide”3 for guidance.
2.2 Task 2 - Report Writing (50% subtotal)
You will also write a report (maximum five pages) on your work, which you will submit to Ultra alongside your code. The report must contain the following structure:
Introduction and Method (10%). Introduce the task and contextualise the given problem. Make sure to include a few references to previously published work in the field, where you should demon- strate an awareness of the relevant research works. Describe the model(s) and approaches you used to undertake the task. Any decisions on hyper-parameters must be stated here, including motivation for your choices where applicable. If the basis of your decision is experimentation with a number of parameters, then state this.
Result and Discussion(10)%). Describe, compare and contrast the results you obtained on your model(s). Any relationships in the data should be outlined and pointed out here. Only the most important conclusions should be mentioned in the text. By using tables and figures to support the section, you can avoid describing the results fully. Describe the outcome of the experiment and the conclusion that you can draw from these results.
Robot Design (20%). Consider designing an autonomous robot to undertake the given task in the real scene. Discuss the foreseen challenges and propose your design, including robot mechanic configuration, hardware and algorithms for robot sensing and controlling, and system efficiency etc. Provide appropriate justifications for your design choices with evidence from existing literature. You may use simulators such as “CoppeliaSim Edu” or “Gazebo” for visualising your design.
3 https://google.github.io/styleguide/pyguide.html
2
 
Format, Writing Style, and Presentation (10%). Language usage and report format should be in a professional standard and meet the academic writing criteria, with the explanation appropriately divided as per the structure described above. Tables, figures, and references should be included and cited where appropriate. A guide of citation style can be found at library guide4.
3 Learning Outcome
The following materials from lectures and lab practicals are closely relevant to this task:
1. Basic Deep Neural Networks - Image Classification.
2. Generic Visual Perception - Object Detection.
3. Deep Learning for Robotics Sensing and Controlling - Consideration for Robotic System Design.
The following key learning outcomes are assessed:
1. A critical understanding of the contemporary deep machine learning topics presented, and how these are applicable to relevant industrial problems and have future potential for emerging needs in both a research and industrial setting.
2. An advanced knowledge of the principles and practice of analysing relevant robotics and computer vision deep machine learning based algorithms for problem suitability.
3. Written communication, problem solving and analysis, computational thinking, and advanced pro- gramming skills.
The rubric and feedback sheet are attached at the end of this document.
 4 https://libguides.durham.ac.uk/research_skills/managing_info/plagiarism 3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:菲律賓申請中國探親簽證流程 入華探親簽辦理材料
  • 下一篇:EEE-6512 代寫、代做 java/c++編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        黄色一区二区三区四区| 午夜精品在线观看| 国产精品视频免费在线观看| 欧美亚州韩日在线看免费版国语版| 免费看黄裸体一级大秀欧美| 亚洲一区二区在线免费观看| 国产毛片精品国产一区二区三区| 亚洲国产精品成人综合色在线婷婷| 欧美精品一线| 久久国内精品视频| 午夜国产精品视频免费体验区| 国产精品国产三级国产aⅴ浪潮| 艳女tv在线观看国产一区| 国产精品日韩专区| 久久国产精品久久久久久电车| 国产美女扒开尿口久久久| 亚洲丰满少妇videoshd| 葵司免费一区二区三区四区五区| 久久国产综合精品| 亚洲丝袜av一区| av72成人在线| 欧美一区二区三区四区在线| 一区二区三区免费网站| 好吊一区二区三区| 99在线精品免费视频九九视| 亚洲毛片在线观看.| 玖玖综合伊人| 欧美日韩极品在线观看一区| 欧美福利一区二区| 国内外成人免费激情在线视频网站| 极品少妇一区二区三区精品视频| 一区二区三区精品| 欧美视频在线不卡| 国产视频一区二区在线观看| 国产欧美一区二区三区在线老狼| 亚洲国产美女精品久久久久∴| 国产精品蜜臀在线观看| 欧美精品18| 91久久在线观看| 一本久久精品一区二区| 久久久精品国产免费观看同学| 亚洲美女在线观看| 久久久99爱| 在线观看欧美亚洲| 欧美日韩高清不卡| 玖玖玖免费嫩草在线影院一区| 欧美精品情趣视频| 亚洲欧美日韩国产综合在线| 99视频热这里只有精品免费| 欧美日韩国产经典色站一区二区三区| 美女精品国产| 亚洲一区二区高清视频| 久久人人97超碰精品888| 欧美日韩国产精品专区| 久久久亚洲影院你懂的| 国产在线日韩| 麻豆精品国产91久久久久久| 久久久久久久91| 亚洲自拍啪啪| 欧美日韩中字| 国产日韩欧美一区二区| 免费久久99精品国产自| 亚洲综合另类| 激情婷婷久久| 亚洲精品男同| 另类图片综合电影| 亚洲一区二区伦理| 一本色道久久综合狠狠躁篇的优点| 欧美精品手机在线| 国产精品青草久久| 亚洲一区二区黄| 国产喷白浆一区二区三区| 18成人免费观看视频| 国产精品自拍网站| 亚洲高清视频一区| 国产专区一区| 欧美大片在线影院| 国产精品色一区二区三区| 欧美激情1区2区3区| 国产精品免费久久久久久| 亚洲国产精品久久久久婷婷老年| 黄色工厂这里只有精品| 亚洲午夜在线| 一区二区三区高清在线观看| 国产午夜精品美女视频明星a级| 国产精品白丝黑袜喷水久久久| 在线不卡免费欧美| 亚洲激精日韩激精欧美精品| 欧美香蕉大胸在线视频观看| 欧美色区777第一页| 先锋影院在线亚洲| 亚洲福利国产精品| 日韩亚洲视频在线| 国产在线乱码一区二区三区| 久久天堂成人| 黄色成人免费观看| 欧美成人免费va影院高清| 亚洲伦理中文字幕| 好看的日韩av电影| 亚洲精品久久| 亚洲国产精品激情在线观看| 国产精品mv在线观看| 欧美视频在线观看| 国产精品免费一区二区三区在线观看| 欧美亚洲免费高清在线观看| 久久精品99国产精品酒店日本| 国产视频一区在线| 欧美亚洲综合网| 国产日韩欧美高清免费| 亚洲国产日韩欧美在线动漫| 亚洲激情黄色| 狠狠入ady亚洲精品经典电影| 老色鬼久久亚洲一区二区| 老牛嫩草一区二区三区日本| 久久久久九九九九| 久久国产精品久久久| 欧美成人一区二区三区在线观看| 国产日韩欧美综合| 精品成人久久| 亚洲国产精品久久久久久女王| 久久久不卡网国产精品一区| 亚洲第一主播视频| 亚洲特色特黄| 欧美日韩国产综合一区二区| 国产精品一区二区a| 国产日韩久久| 亚洲第一色中文字幕| 国产精品国产三级国产a| 国产人成精品一区二区三| 亚洲国产精品久久精品怡红院| 久久久久国产一区二区三区四区| 亚洲高清免费在线| 欧美日韩一区视频| 一区在线观看| 欧美在线观看一区二区三区| 午夜精品久久久久久久99水蜜桃| 国产欧美一区二区三区在线看蜜臀| 国产日韩欧美精品| 久久久久女教师免费一区| 日韩午夜激情| 一区二区三区日韩精品| 欧美在线视频在线播放完整版免费观看| 欧美高清不卡在线| 国产乱码精品一区二区三区不卡| 影音先锋在线一区| 亚洲小说春色综合另类电影| 国产精品毛片高清在线完整版| 久久亚洲精品伦理| 韩日成人av| 欧美精品精品一区| 正在播放亚洲一区| 99v久久综合狠狠综合久久| 国产综合久久久久久鬼色| 在线日本成人| av成人免费在线观看| 欧美激情视频给我| 在线观看日韩欧美| 亚洲激情一区| 欧美/亚洲一区| 国产视频精品网| 欧美大色视频| 国产精品一区二区久久精品| 欧美激情第一页xxx| 欧美伦理视频网站|