日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP52715 代做、代寫 Python設計編程

時間:2024-04-22  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP52715 Deep Learning for Computer Vision & Robotics (Epiphany Term, 202**4)
Summative Coursework - 3D PacMan
Coursework Credit - 15 Credits Estimated Hours of Work - 48 Hours Submission Method - via Ultra
Release On: February 16 2024 (2pm UK Time)
Due On: March 15 2024 (2pm UK Time)
– All rights reserved. Do NOT Distribute. –
  Compiled on November 16, 2023 by Dr. Jingjing Deng

1
1.
2.
3.
4.
5.
6.
Coursework Specification
This coursework constitutes **% of your final mark for this module, where there are two mandatory tasks: Python programming and report writing. You must upload your work to Ultra before the deadline specified on the cover page.
The other 10% will be assessed separately based on seminar participation. There are 3 seminar sessions in total, the mark awarding rule is as such: (A) participating in none=0%, (B) participating in 1 session=2%, (C) participating in 2 sessions=5%, (D) participating in all sessions=10%.
This coursework is to be completed by students working individually. You should NOT ask for help from your peers, lecturer, and lab tutors regarding the coursework. You will be assessed on your code and report submissions. You must comply with the University rules regarding plagiarism and collusion. Using external code without proper referencing is also considered as breaching academic integrity.
Code Submission: The code must be written in Jupyter Notebook with appropriate comments. For constructing deep neural network models, use PyTorch1 library only. Zip Jupyter Note- book source files (*.ipynb), your dataset (if there is any new), pretrained models (*.pth), and a README.txt (code instruction) into one single archive. Do NOT include the original “Pac- Man Helper.py”, “PacMan Helper Demo.ipynb”, “PacMan Skeleton.ipynb”, “TrainingImages.zip”, “cloudPositions.npy” and “cloudColors.npy” files. Submit a single Zip file to GradeScope - Code entry on Ultra.
Report Submission: The report must NOT exceed 5 pages (including figures, tables, references and supplementary materials) with a single column format. The minimum font size is 11pt (use Arial, Calibri, Times New Roman only). Submit a single PDF file to GradeScope - Report entry on Ultra.
Academic Misconduct is a major offence which will be dealt with in accordance with the University’s General Regulation IV – Discipline. Please ensure you have read and understood the University’s regulations on plagiarism and other assessment irregularities as noted in the Learning and Teaching Handbook: 6.2.4: Academic Misconduct2.
            Figure 1: The mysterious PhD Lab.
 1 https://pytorch.org/
2 https://durhamuniversity.sharepoint.com/teams/LTH/SitePages/6.2.4.aspx
1

2 Task Description (**% in total)
2.1 Task 1 - Python Programming (40% subtotal)
In this coursework, you are given a set of 3D point-clouds with appearance features (i.e. RGB values). These point-clouds were collected using a Kinect system in a mysterious PhD Lab (see Figure.1). Several virtual objects are also positioned among those point clouds. Your task is to write a Python program that can automatically detect those objects from an image and use them as anchors to collect the objects and navigate through the 3D scene. If you land close enough to the object it will be automatically captured and removed from the scene. A set of example images that contain those virtual objects are provided. These example images are used to train a classifier (basic solution) and an object detector (advanced solution) using deep learning approaches in order to locate the targets. You are required to attempt both basic and advance solutions. “PacMan Helper.py” provides some basic functions to help you complete the task. “PacMan Helper Demo.ipynb” demonstrates how to use these functions to obtain a 2D image by projecting 3D point-clouds onto the camera image-plane, and how to re-position and rotate the camera etc. All the code and data are available on Ultra. You are encouraged to read the given source codes, particularly “PacMan Skeleton.ipynb”.
Detection Solution using Basic Binary Classifier (10%). Implement a deep neural network model that can classify the image patch into two categories: target object and background. You can use the given images to train your neural network. It then can be used in a sliding window fashion to detect the target object in a given image.
Detection Solution using Advance Object Detector (10%). Implement a deep neural network model that can detect the target object from the image. You may manually or automatically create your own dataset for training the detector. The detector will predict bounding boxes that contain the object from a given image.
Navigation and Collection Task Completion (10%). There are 11 target objects in the scene. Use the trained models to perform scene navigation and object collection. If you land close enough to the object it will be automatically captured and removed from the scene. You may compare the performance of both models.
Visualisation, Coding Style, and Readability (10%). Visualise the data and your experimental results wherever is appropriate. The code should be well structured with sufficient comments for the essential parts to make the implementation of your experiments easy to read and understand. Check the “Google Python Style Guide”3 for guidance.
2.2 Task 2 - Report Writing (50% subtotal)
You will also write a report (maximum five pages) on your work, which you will submit to Ultra alongside your code. The report must contain the following structure:
Introduction and Method (10%). Introduce the task and contextualise the given problem. Make sure to include a few references to previously published work in the field, where you should demon- strate an awareness of the relevant research works. Describe the model(s) and approaches you used to undertake the task. Any decisions on hyper-parameters must be stated here, including motivation for your choices where applicable. If the basis of your decision is experimentation with a number of parameters, then state this.
Result and Discussion(10)%). Describe, compare and contrast the results you obtained on your model(s). Any relationships in the data should be outlined and pointed out here. Only the most important conclusions should be mentioned in the text. By using tables and figures to support the section, you can avoid describing the results fully. Describe the outcome of the experiment and the conclusion that you can draw from these results.
Robot Design (20%). Consider designing an autonomous robot to undertake the given task in the real scene. Discuss the foreseen challenges and propose your design, including robot mechanic configuration, hardware and algorithms for robot sensing and controlling, and system efficiency etc. Provide appropriate justifications for your design choices with evidence from existing literature. You may use simulators such as “CoppeliaSim Edu” or “Gazebo” for visualising your design.
3 https://google.github.io/styleguide/pyguide.html
2
 
Format, Writing Style, and Presentation (10%). Language usage and report format should be in a professional standard and meet the academic writing criteria, with the explanation appropriately divided as per the structure described above. Tables, figures, and references should be included and cited where appropriate. A guide of citation style can be found at library guide4.
3 Learning Outcome
The following materials from lectures and lab practicals are closely relevant to this task:
1. Basic Deep Neural Networks - Image Classification.
2. Generic Visual Perception - Object Detection.
3. Deep Learning for Robotics Sensing and Controlling - Consideration for Robotic System Design.
The following key learning outcomes are assessed:
1. A critical understanding of the contemporary deep machine learning topics presented, and how these are applicable to relevant industrial problems and have future potential for emerging needs in both a research and industrial setting.
2. An advanced knowledge of the principles and practice of analysing relevant robotics and computer vision deep machine learning based algorithms for problem suitability.
3. Written communication, problem solving and analysis, computational thinking, and advanced pro- gramming skills.
The rubric and feedback sheet are attached at the end of this document.
 4 https://libguides.durham.ac.uk/research_skills/managing_info/plagiarism 3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:菲律賓申請中國探親簽證流程 入華探親簽辦理材料
  • 下一篇:EEE-6512 代寫、代做 java/c++編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产精品最新自拍| 欧美久色视频| 欧美福利一区二区三区| 亚洲免费观看在线观看| 欧美亚州韩日在线看免费版国语版| 欧美日韩一区二区三区四区五区| 欧美日韩一区三区| 久久国产一二区| 国产日韩欧美成人| 亚洲第一搞黄网站| 国产女主播一区| 国产精品久久久久久久久久免费看| 国产一区二区三区精品欧美日韩一区二区三区| 国产亚洲欧美日韩在线一区| 欧美另类专区| 国产精品网站一区| 国产欧美亚洲精品| 一区二区精品| 国产日韩精品久久| 亚洲无线视频| 国产日韩一区二区三区| 制服丝袜激情欧洲亚洲| 国产精品日韩专区| 欧美丰满高潮xxxx喷水动漫| 亚洲国产精品一区二区www| 国产精品久久网站| 精品动漫一区二区| 久久亚洲综合色一区二区三区| 久久久久免费视频| 久久精品人人做人人爽电影蜜月| 亚洲尤物视频网| 亚洲女性喷水在线观看一区| 性做久久久久久免费观看欧美| 国内精品国产成人| 国产伦精品一区| 久久久久九九视频| 亚洲精品国产无天堂网2021| 久久www成人_看片免费不卡| 国产一级一区二区| 裸体歌舞表演一区二区| 国产在线乱码一区二区三区| 久久精视频免费在线久久完整在线看| 欧美福利在线观看| 亚洲高清久久| 欧美精品在线观看播放| 国产亚洲一区二区三区在线播放| 日韩一区二区精品在线观看| 欧美在线网址| 亚洲人成高清| 在线视频日本亚洲性| 夜夜嗨av一区二区三区四区| 国产在线精品成人一区二区三区| 久久精品国产久精国产思思| 亚洲韩国精品一区| 亚洲自拍都市欧美小说| 久久夜色精品国产欧美乱| 精品成人一区二区三区四区| 免费日韩成人| 久久性色av| 久久成人人人人精品欧| 久久这里有精品15一区二区三区| 国产精品国产三级国产专播精品人| 免费成人av在线| av成人福利| 国产一区二区三区久久久| 亚洲动漫精品| 欧美成ee人免费视频| 国产欧美日韩视频一区二区| 1000部精品久久久久久久久| 在线日韩中文字幕| 一区二区三区欧美在线| 欧美一区二区精品| 国产精品久久国产精麻豆99网站| 夜夜嗨网站十八久久| 欧美高清视频一区| 亚洲欧美福利一区二区| 亚洲免费av网站| 亚洲综合精品一区二区| 日韩亚洲欧美一区二区三区| 亚洲国产精品一区二区三区| 蜜臀99久久精品久久久久久软件| 亚洲你懂的在线视频| 国产午夜精品一区二区三区视频| 欧美大成色www永久网站婷| 国产欧美日韩高清| 亚洲精品国久久99热| 亚洲综合二区| 久久久久.com| 一本色道久久88亚洲综合88| 性色av一区二区三区在线观看| 欧美区高清在线| 国产精品久久激情| 欧美日韩一区三区| 午夜国产不卡在线观看视频| 国产精品美女久久久久久2018| 国产乱码精品1区2区3区| 国产欧美日本在线| 久久精品成人欧美大片古装| 欧美在线观看www| 欧美精品在线播放| 红杏aⅴ成人免费视频| 久久av老司机精品网站导航| 亚洲国产美女久久久久| 欧美激情2020午夜免费观看| 欧美激情一区二区三区在线视频| 国产一区白浆| 99精品黄色片免费大全| 日韩性生活视频| 国产日韩欧美一二三区| 久久久久久网| 国产精品男女猛烈高潮激情| 国内伊人久久久久久网站视频| 国产精品久久久久久超碰| 这里只有精品视频在线| 欧美午夜www高清视频| 欧美ed2k| 欧美精品一区在线播放| 鲁鲁狠狠狠7777一区二区| 在线观看亚洲视频| 国内外成人免费激情在线视频网站| 欧美一区二区三区久久精品茉莉花| 亚洲区免费影片| 蜜桃精品一区二区三区| 亚洲电影在线| 激情小说亚洲一区| 国产婷婷色一区二区三区在线| 亚洲高清123| 亚洲欧美精品在线观看| 久久精品国产亚洲高清剧情介绍| 亚洲午夜国产一区99re久久| 欧美日韩一区二区在线观看| 亚洲免费伊人电影在线观看av| 久久这里只有精品视频首页| 一区二区在线观看视频在线观看| 欧美一区高清| 国产毛片精品视频| 午夜精品久久久久久久男人的天堂| 男人的天堂亚洲在线| 日韩一级大片在线| 欧美伊人久久久久久午夜久久久久| 欧美日韩国产色站一区二区三区| 国产精品推荐精品| 久久久www| 牛人盗摄一区二区三区视频| 亚洲欧洲日本在线| 欧美日产在线观看| 欧美日韩成人综合| 欧美日韩免费| 日韩视频第一页| 国产精品综合| 亚洲欧洲日产国产综合网| 欧美大片一区二区| 亚洲电影免费观看高清| 久久综合电影一区| 久久精品在线| 欧美日韩专区| 亚洲人成7777| 国产精品久久二区二区| 久久精品国产免费观看| 欧美顶级大胆免费视频| 免费观看成人网| 久久www成人_看片免费不卡| 亚洲欧洲一区二区在线播放| 在线观看亚洲专区|