日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫EMATM0050 DSMP MSc in Data Science

時間:2024-04-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



 University of Bristol MSc in Data Science; DSMP (Data Science Mini Project; EMATM0050)
Predicting T-Cell Receptor Specificity
T cells (T lymphocytes) are among the most important immune system cells with a vital role in adaptive immunity. T cells recognise cells in the body infected by viruses, bacteria or cells that have undergone cancer transformation. After recognising the infected or cancerous cells, T cells eliminate them from the body thereby preventing the spread of infection or cancer.
T cells recognise their targets through their T Cell Receptors (TCRs) expressed on their cell membrane. A T Cell Receptor consists of an alpha and a beta subunit. The evolutionary arms race between pathogens and the immune system has resulted in a mechanism for generation of a huge number of unique TCRs: and this is essential for a proper immune response against infections and cancer. Although TCR genes are encoded in the genome, their diversity is massively enhanced in several ways: (i) each TCR is composed of a pair of proteins (either alpha + beta chains or gamma + delta chains); (ii) rather than being encoded as a single gene, the DNA encoding the variable region of each of these chains is formed by joining 3 or 4 different stretches of DNA (gene segments) in a process is called VDJ recombination. Each alpha subunit contains a single V and J segment and each beta subunit contains a single V, a D and a J segment. Diversity is provided by the fact that the genome encodes multiple V, D and J segment; (iii) The joining of these segments involves mechanisms which insert and delete nucleotides in a pseudorandom fashion, maximising diversity in the joining region (the CDR3), the region of the TCR chain which contacts the peptide antigen. (ref 1)
T Cell Receptors (TCRs) constitute one of the most promising classes of emerging therapeutics. Whilst TCRs are amongst the most complex facets of immune biology, engineering of an optimum TCR can transform immunotherapies and personalised medicines. The TCR repertoire at any time point reflects on the person’s health and contains a memory of all past experiences. However, CRs are highly variable and their specificities aren’t easily predictable with traditional empirical methods.
In this project you will analyse TCR repertoire from the VDJdb (link) and use machine learning to predict TCRs that will bind to specific epitopes.
 
 Tasks
1. Data Download and Preprocessing
1.1 Download the zip file from GitHub and focus on the VDJdb.txt file.
1.2 Preprocess the dataset. Figure out what each column represents and keep
columns that will help you complete the project.
Predicting TCR specificity from sequence alone is the holy grail of immunotherapy. TCRs that are specific to the same target, often have very similar sequences, thereby TCR sequence – target patterns emerge in the data.
A crude approach could be to represent amino acids of the TCR or key regions of it using one-hot representation.
2. What are the limitations of this approach in downstream analysis? Could you describe a way to overcome them (Hint: Consider the CDR3 length distribution. We are looking for a high level description of the limitation and an approach that would overcome it. No algorithm development is required.)
A common method to predict specificity from a sequence is described in Vujovic et.al. (1). It creates some kind of distance or similarity score matrix of TCR sequences and uses that representation to train models that can classify TCRs based on specificity (Fig 1.).
 
  3. Estimate a distance/similarity matrix representation of the data. Calculate these metrics for the alpha and the beta chains separately, then calculate these for the combined alpha and beta chains too. (Hint: TCRDist, GLIPH or GIANA can be used for this. Alternatively, you can define your own similarity metric.)
4. Plot the TCRs in 2 dimensions and colour them based on specificity. Compare the plots for the alpha, the beta and the combined alpha-beta chains. Comment on your findings. (Hint: scikit-learn has a plethora of dimensionality reduction tools. Some examples are PCA, tSNE and UMAP.)
5. Write code to cluster TCRs. How well do TCRs cluster based on specificity? Can you explain why they do/don’t?
6. Write an algorithm that can predict antigen specificity from sequence. You can use any supervised/unsupervised algorithm to predict specificity. Comment on the performance of the model and reason why it performs good or bad. (Hint: Any reasonable modelling approach is fine. However, keep in mind that simpler models sometimes provide more insights regarding the underlying problem.)

 Bibliography/References
1. Vujovic M, Degn KF, Marin FI, Schaap-Johansen AL, Chain B, Andresen TL, Kaplinsky J, Marcatili P. T cell receptor sequence clustering and antigen specificity. Comput Struct Biotechnol J (2020) 18:2166–21**. doi:10.1016/j.csbj.2020.06.041
2. Mayer-Blackwell. TCR meta-clonotypes for biomarker discovery with tcrdist3: quantification of public, HLA- 2 restricted TCR biomarkers of SARS-CoV-2 infection. bioRxiv (2020) 1:75–94.
3. Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM. Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nat Biotechnol (2020) 38:1194–1202. doi:10.1038/s41587-020-0505-4
4. Zhang H, Zhan X, Li B. GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation. Nat Commun (2021) 12:1–11.doi:10.1038/s41467-02**25006-WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:學習英語必備的幾大教材!非常全面
  • 下一篇:代做CS 7642 Reinforcement Learning and Decision
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        免费成人av| 久久视频一区二区| 久久国产天堂福利天堂| 亚洲一区二区在线看| 一区二区三区欧美在线观看| 欧美一区在线视频| 日韩亚洲国产欧美| 狠狠v欧美v日韩v亚洲ⅴ| 久久av在线看| 久久久久成人精品免费播放动漫| 国产一区视频网站| 国产亚洲综合性久久久影院| 欧美18av| 正在播放欧美视频| 国产精品专区h在线观看| 久久久999精品视频| 欧美三级不卡| 国产午夜精品一区理论片飘花| 夜夜嗨av色综合久久久综合网| 免费观看在线综合色| 国产欧美一区二区三区国产幕精品| 亚洲久久一区二区| 尤物yw午夜国产精品视频明星| 国产日本欧美一区二区三区| 亚洲美女视频在线免费观看| 蜜臀a∨国产成人精品| 性18欧美另类| 欧美在线视频一区| 夜夜爽99久久国产综合精品女不卡| 最新69国产成人精品视频免费| 国内外成人在线视频| 欧美三级午夜理伦三级中文幕| 亚洲一区三区电影在线观看| 一区二区三区视频在线播放| 欧美成人中文字幕在线| 国产精品久久久久久久久久妞妞| 欧美日韩网址| 亚洲一区二区三区乱码aⅴ蜜桃女| 国产精品综合网站| 1000精品久久久久久久久| 亚洲第一中文字幕| 欧美丝袜一区二区三区| 欧美激情欧美激情在线五月| 免费毛片一区二区三区久久久| 欧美另类女人| 久久裸体视频| 在线观看三级视频欧美| 久久这里只精品最新地址| 亚洲美女在线国产| 亚洲一区二三| 精品69视频一区二区三区| 久久综合伊人77777| 亚洲美女在线看| 亚洲免费精品| 国产伦理一区| 亚洲女人天堂成人av在线| 亚洲色在线视频| 国产精品高潮呻吟久久av无限| 亚洲电影成人| 好吊色欧美一区二区三区视频| 国产精品久久久久久超碰| 麻豆国产va免费精品高清在线| 久久永久免费| 亚洲九九精品| 亚洲午夜在线视频| 久久久激情视频| 久久久久**毛片大全| 夜夜狂射影院欧美极品| 日韩视频在线一区二区| 亚洲欧美一区二区原创| 在线看国产一区| 亚洲视频精选| 一本色道综合亚洲| 欧美日韩伦理在线免费| 日韩系列欧美系列| 国内精品免费午夜毛片| 午夜欧美精品久久久久久久| 在线观看亚洲精品| 国产精品igao视频网网址不卡日韩| 在线不卡中文字幕| 夜夜嗨av一区二区三区网站四季av| 国产精品最新自拍| 久久精品综合一区| 玉米视频成人免费看| 久久婷婷国产综合精品青草| 欧美精品少妇一区二区三区| 亚洲美洲欧洲综合国产一区| 免费观看日韩av| 久久午夜羞羞影院免费观看| 国产视频久久久久| 国产九九视频一区二区三区| 亚洲国产成人在线播放| 亚洲六月丁香色婷婷综合久久| 91久久久国产精品| 国产女人水真多18毛片18精品视频| 欧美午夜www高清视频| 欧美久久久久久久久| 久久精品亚洲一区二区三区浴池| 国产精品一区二区黑丝| 国色天香一区二区| 国产日韩欧美日韩大片| 亚洲伊人一本大道中文字幕| 亚洲小说欧美另类社区| 欧美日韩黄色一区二区| 国产精品国产福利国产秒拍| 欧美国产亚洲精品久久久8v| 国产主播一区二区三区| 欧美人与禽性xxxxx杂性| 嫩模写真一区二区三区三州| 欧美一区二区三区免费视频| 国产精品亚洲欧美| 亚洲天堂免费观看| 国产精品久久久爽爽爽麻豆色哟哟| 久久久噜噜噜久久中文字免| 久久人人97超碰人人澡爱香蕉| 亚洲综合精品自拍| 国模 一区 二区 三区| 国产亚洲激情视频在线| 日韩视频精品在线| 快播亚洲色图| 久久国产精品免费一区| 亚洲第一偷拍| 久久一综合视频| 国产精品国产精品| 在线一区免费观看| 合欧美一区二区三区| 亚洲精品视频啊美女在线直播| 性欧美18~19sex高清播放| 欧美在线三级| 一区二区三区不卡视频在线观看| 亚洲欧美国产精品桃花| 久久精品亚洲国产奇米99| 韩国成人精品a∨在线观看| 亚洲欧美激情四射在线日| 欧美中文字幕在线视频| 黄色另类av| 亚洲国产女人aaa毛片在线| 亚洲精品精选| 欧美在线播放一区二区| 亚洲福利视频二区| 999亚洲国产精| 国产日韩欧美高清免费| 欧美精品 国产精品| 一区二区三区欧美在线观看| 亚洲人成亚洲人成在线观看图片| 日韩一区二区精品在线观看| 老司机免费视频一区二区| 亚洲人成在线观看| 欧美日韩亚洲不卡| 伊人狠狠色j香婷婷综合| 久久久久久久久久久久久久一区| 国产一区再线| 亚洲国产一二三| 欧美aⅴ一区二区三区视频| 欧美88av| 午夜性色一区二区三区免费视频| 亚洲欧美在线看| 久久成人综合网| 欧美视频中文一区二区三区在线观看| 亚洲精品国产精品国产自| 欧美成年视频| 久久综合狠狠综合久久综青草| 久久免费偷拍视频| 国产欧美欧美|