日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CMSE11475、代做Java/Python編程

時間:2024-04-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Financial Machine Learning (CMSE11**5)
Group Project Assignment
2023/2024
Content
Content................................................................................................................................................................................................. 1
Project Description......................................................................................................................................................................... 2
Individual Project: ......................................................................................................................................................................... 2
Project Deadline and Submission:........................................................................................................................................... 2
Project topic ................................................................................................................................................................................... 2
Project Hints ................................................................................................................................................................................... 2
Suggested Topics ............................................................................................................................................................................ 3
Forecasting Limit Order Book ............................................................................................................................................... 3
Forecasting Stock Volatility.................................................................................................................................................... 5
Forecasting High Frequency Cryptocurrency Return.................................................................................................. 7
Project Description
The project aims to practice the use of state-of-art machine learning models to analyse financial data and
solve financial problems.
Individual Project:
The project is individual project. No group is required. Students shall select their own topic with data to
complete their own research question alone. Cooperation and discussion with each other in the learning
process is encouraged but the project shall be completed by students’ own work, not a grouped work.
Project Deadline and Submission:
Individual projects run from 15
th January 2024 (week 1) to 29th March 2024 (week 10).
The deadline of submission is 14:00, Thursday, 4
th April 2024.
The submision of the project includes the project report and all implementation codes (do NOT submit any
data). The code shall work on the originally provided datasets. The report and the codes shall be ZIPPED to
one package for submission.
The report MUST follow the given template. All sections are required. The code MUST have complete and
detailed comments for every major logical section.
Project topic
Each student should individually choose a topic from the following suggested topics (with provided data) as
your own project. You are encouraged to revise/improve the project topic to make it more practical,
challenging, and suitable for your own research question. It’s fine if many students select the same suggested
topics as their projects as long as the codes and project reports are significantly distinctive.
The aim of this project is to apply at least THREE out of five techniques illustrated in the course (Deep Neural
Network; XGBoost; Cross-validation; Ensemble Model; Interpretability) to solve a financial problem.
Project Hints
All suggested topics are based on the computer lab examples with some changes and extensions. You can
easily find similar methods and models in the computer lab examples. Carefully studying those examples
and codes are crucial for understanding this course and complete the group coursework.
Suggested Topics
Forecasting Limit Order Book
Topic
Can we use deep neural network to forecast the high-frequency return at multiple horizon for stocks using
their limit order book information?
Data
10-level high frequency Limit Order Book of five stocks: Apple, Amazon, Intel, Microsoft, and Google on 21st
June 2012. Data size from 40MB to 100+MB. You can select to use part of the data.
Method
You may define the following features:are the ask and bid price of 10 levels (𝑖 = 1, … ,10), and w**7;w**5;
𝑖,𝑎
and w**7;w**5;
𝑖,𝑏
are the volume of 10 levels
(𝑖 = 1, … ,10). w**4;w**5;
𝐿𝑂w**; ∈ **7;40
2) Bid-Ask Order Flow (OF)
𝑏𝑂𝐹w**5;,𝑖 = {
w**7;w**5;
𝑖,𝑏
, 𝑖𝑓 𝑏w**5;
𝑖 > 𝑏w**5;−1
𝑖
w**7;w**5;
𝑖,𝑏 − w**7;w**5;−1
𝑖,𝑏
,𝑖𝑓 𝑏w**5;
𝑖 = 𝑏w**5;−1
𝑖
−w**7;w**5;
𝑖,𝑏
, 𝑖𝑓 𝑏w**5;
𝑖 < 𝑏w**5;−1
𝑖
𝑎𝑂𝐹w**5;,𝑖 = {
w**7;w**5;
𝑖,𝑎
, 𝑖𝑓 𝑎w**5;
𝑖 > 𝑎w**5;−1
𝑖
w**7;w**5;
𝑖,𝑎 − w**7;w**5;−1
𝑖,𝑎
,𝑖𝑓 𝑎w**5;
𝑖 = 𝑎w**5;−1
𝑖
−w**7;w**5;
𝑖,𝑎
, 𝑖𝑓 𝑎w**5;
𝑖 < 𝑎w**5;−1
𝑖
𝑂𝐹𝑖 ∈ **7;20
3) Order Flow Imbalance (OFI)
𝑂𝐹𝐼w**5; = 𝑏𝑂𝐹w**5;,𝑖 − 𝑎𝑂𝐹w**5;,𝑖
𝑂𝐹𝐼w**5; ∈ **7;20
The features can be defined as a vector
𝐗w**5; = (w**4;w**5;
𝐿𝑂w**;
, 𝑏𝑂𝐹w**5;,𝑖
, 𝑎𝑂𝐹w**5;,𝑖
,𝑂𝐹𝐼w**5;)
𝑇
The total dimension of feature vector 𝐗w**5;
is 40+20+10=70. 𝐗w**5; ∈ **7;70
.
The target is the the LOB mid-point return 𝐫w**5; over 𝐻 future horizons (𝐻 ≥ 1).
𝐫w**5; = (w**3;w**5;,1, … , w**3;w**5;,𝐻)
𝑇
This project is to estimate the function 𝑓(∙), that takes a sequence of historical 𝐗w**5; as input and generates
vector 𝐫w**5; as output:
𝐫w**5; = 𝑓(𝐗w**5;
,𝐗w**5;−1, 𝐗w**5;−2, … , 𝐗w**5;−𝑾)
Where 𝑾 is the look back window, 𝐫w**5; = (w**3;w**5;,1, … , w**3;w**5;,𝐻)
𝑇
𝑗 = 1, … , 𝐻.
This topic shall use LSTM as one of the potential models. You may try to train the LSTM model with the raw
70-dimension features 𝐗w**5; with different 𝑾. You may also extract the features with lower dimensions 𝑀 < 70
by autoencoder and then train the LSTM model using the extracted features with different 𝑾. You can provide
a comparison of those two methods.
This project shall also address the question of the feature importance.
Forecasting Stock Volatility
Topic
This topic comprises two subtopics, both pertaining to volatility forecasting. These subtopics are as follows:
1) Is stock volatility path-dependent?
2) Is stock volatility past-dependent?
To address these questions, you have the option to employ various machine learning models for forecasting
stock return volatility. This can be achieved either by utilising past returns (path-dependent) or past volatilities
(past-dependent).
Addressing either of the aforementioned sub-questions fulfils the coursework requirements for the
FML course. There is no need to complete work for both questions.
Data
In computer lab_3_1, we show the method to download stock prices from Yahoo Finance. This topic uses the
stock adjusted prices to calculate its volatility. You shall calculate the volatility as the standard deviation of the
Ү**; daily arithmetic returns, but it's essential to note that this volatility should be computed based on returns
within distinct, non-overlapping Ү**;-day intervals. Ү**; can be five or ten days. The following figure shows the
volatility calculation, where w**3;𝑖
is the daily return and ҵ**;𝑖
is the five-day volatility.
To successfully complete the coursework, you must choose a minimum of two stocks to assess one of the
aforementioned questions. The selection of these stocks should align with your personal interests.
Method
The topic is to investigate whether the volatility is path-dependent or past-dependent. But the length 𝐿 of
the path and past are unknown. You can select 𝐿 as 5, 10, 15, 20, or 40 days in the investigation and conclude
with a best 𝐿. Please decide by yourself what lengths 𝐿 to select in your coursework.
For the question of path-dependent, the input features contain the daily returns in past 𝐿 days:
𝐗w**5; = (w**3;w**5;−1, w**3;w**5;−2, w**3;w**5;−2, … , w**3;w**5;−𝐿
)
𝑇
The output is the volatility 𝑦w**5; = ҵ**;w**5;
. Please be aware that the returns in 𝐗w**5;
shall not be included in the
calculation of the output volatility 𝑦w**5;
. As illustrated in figure below, to forecast the volatility ҵ**;w**5;
, you can use
the daily returns w**3;w**5;−1, w**3;w**5;−2,…, w**3;w**5;−𝐿
in past 𝐿 days.
For the question of past-dependent, the input features contain the previous 𝐿 volatilities:
𝐗w**5; = (ҵ**;w**5;−1, ҵ**;w**5;−2, ҵ**;w**5;−3, … , ҵ**;w**5;−𝐿
)
𝑇
The output is the volatility 𝑦w**5; = ҵ**;w**5;
.
This topic shall use any of the machine learning models.
This topic may also answer what length 𝐿 generate the best forecasting results for the path- and pastdependence.
Forecasting High Frequency Cryptocurrency Return
Topic
This topic is to study how machine learning models perform in forecasting 15-minute ahead return in any of
the 14 popular cryptocurrencies.
Data
A dataset “cryptocurrency_prices.csv” of millions of rows of **minute frequency market data dating back to
2018 is provided for building the model. The dataset contains 14 popular cryptocurrencies, distinguished by
asset IDs. The details of the asset IDs and names are in the file “asset_details.csv”. You may choose any
cryptocurrencies to forecast. The “Weight” in the file is to calculate the whole market of cryptocurrency and
will be introduced in next section.
Asset_ID Weight Asset_Name
2 2.3978952** Bitcoin Cash
0 4.30**5093 Binance Coin
1 6.779921**7 Bitcoin
5 1.386294361 EOS.IO
7 2.079441542 Ethereum Classic
6 5.894402834 Ethereum
9 2.3978952** Litecoin
11 1.609437912 Monero
13 1.791759469 TRON
12 2.079441542 Stellar
3 4.**7192** Cardano
8 1.09**2289 IOTA
10 1.09**2289 Maker
4 3.555348061 Dogecoin
In the file “cryptocurrency_prices.csv”, the target has been calculated and provided as the column “Target”.
The target is derived from the log return over the future 15 minutes, for each cryptocurrency asset 𝑎 as the
residual of 15 minutes log return Targetw**5;
𝑎
. Noted that, in each row, the “Target” has already been aligned as
the future 15 minute return residual and is to be forecasted. (Target: Residual log-returns for the asset over
a 15 minute horizon.)
We can see the features included in the dataset as the following:
timestamp: All timestamps are returned as second Unix timestamps (the number of seconds elapsed since
1970-0**01 00:00:00.000 UTC). Timestamps in this dataset are multiple of 60, indicating minute-by-minute
data.
Asset_ID: The asset ID corresponding to one of the crytocurrencies (e.g. Asset_ID = 1 for Bitcoin). The mapping
from Asset_ID to crypto asset is contained in asset_details.csv.
Count: Total number of trades in the time interval (last minute).
Open: Opening price of the time interval (in USD).
High: Highest price reached during time interval (in USD).
Low: Lowest price reached during time interval (in USD).
Close: Closing price of the time interval (in USD).
Volume: Quantity of asset bought or sold, displayed in base currency USD.
VWAP: The average price of the asset over the time interval, weighted by volume. VWAP is an aggregated
form of trade data.
Method
You may define some additional features. For example, the past 5 minute log return, the past 5 minute
absolute log return, past 5 minute highest, past 5 minute lowest, etc.
You may try simple models, i.e., linear tree, and complex models, i.e., LSTM and compare their forecasting
performance.
If using LSTM, you may also study what length of the looking back window provide the best forecasting
performance.
In addition, the feature importance shall also be studied to show which features contribute to the stock relative
performance in the future the best.
Appendix
This appendix introduces how the target is calculated.
The log return at time w**5; for asset 𝑎 is calculated as:
𝑅w**5;
𝑎 = log (
𝑃w**5;+16
𝑎
𝑃w**5;+1
𝑎 )
As the crypto asset returns are highly correlated, forecasting returns for individual asset shall remove the
market signal from individual asset returns. Therefore, the weighted average cryptocurrency market return 𝑀w**5;
is defined as:
is the weight for each cryptocurrency and is defined in the column “Weight” in the file
“asset_details.csv”.
Then, a beta is calculated for each asset ҵ**;
Where the bracket &#**01;∙&#**02; calculate the rolling window average over the past 3750 minute windows.
Then, a regression residual is defined as the target for each asset Targetw**5;
BUT, you don’t need to do this calculation. The target values have been calculated and provided in the 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 







 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓大使館周末上班嗎 大使館上班時間是什么時候
  • 下一篇:QBUS6820代做、Python編程語言代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久成人免费| 欧美**人妖| 欧美精品乱人伦久久久久久| 国产精品网站在线播放| 久久精品国产免费看久久精品| 黄网站免费久久| 国产一区二区三区最好精华液| 日韩天天综合| 日韩一级欧洲| 久久人人精品| 久久久国产精品一区二区中文| 亚洲第一页自拍| 国产精品久久久久7777婷婷| 国产在线一区二区三区四区| 欧美在线观看一二区| 欧美国产精品一区| 老司机精品视频一区二区三区| 久久精品国产96久久久香蕉| 在线观看中文字幕亚洲| 久久久久这里只有精品| 欧美巨乳波霸| 久久成人精品| 欧美一区中文字幕| 欧美伊人影院| 鲁鲁狠狠狠7777一区二区| 欧美人牲a欧美精品| 久久精品国产久精国产一老狼| 欧美日韩免费在线| 欧美三区在线观看| 国产一区二区高清视频| 欧美日韩成人一区| 日韩一区二区免费高清| 久久久免费精品| 国产精品视频一二| 一区免费视频| 久久久久久久久久久一区| 国产精品一二三四区| 激情亚洲成人| 国产精品video| 国产一区二区三区精品欧美日韩一区二区三区| 亚洲一级片在线看| 精品成人一区| 亚洲欧美日韩成人| 亚洲人久久久| 亚洲精品一二三| 欧美日韩精品一区二区在线播放| 久久网站免费| 久久aⅴ乱码一区二区三区| 你懂的网址国产 欧美| 亚洲女性喷水在线观看一区| 亚洲清纯自拍| 国产自产女人91一区在线观看| 久久精品视频在线播放| 亚洲精品在线免费观看视频| 午夜视频一区在线观看| 一区二区三区高清视频在线观看| 欧美国产一区二区| 在线亚洲自拍| 亚洲国产精品第一区二区三区| 一区二区三区精品久久久| 国产精品黄色在线观看| 欧美日韩999| 久久久精品免费视频| 香蕉成人久久| 欧美日韩一区三区| 欧美一区综合| 在线观看视频欧美| 国产亚洲在线| 欧美一区二区女人| 欧美a一区二区| 国内欧美视频一区二区| 欧美性做爰毛片| 免费人成精品欧美精品| 欧美一区亚洲| 樱桃视频在线观看一区| 欧美日韩一区高清| 影音先锋另类| 在线亚洲国产精品网站| 国产日韩高清一区二区三区在线| 国产精品vip| 中文亚洲欧美| 亚洲国产日韩美| 激情视频一区二区| 狠狠色伊人亚洲综合成人| 狼人天天伊人久久| 久久久免费观看视频| 亚洲精品一区二区三区蜜桃久| 国产精品女同互慰在线看| 久久综合影视| 国产一区在线观看视频| 午夜精品亚洲一区二区三区嫩草| 欧美成人一区二区在线| 久久亚洲私人国产精品va媚药| 欧美视频一区二区三区在线观看| 亚洲激情av在线| 欧美高清你懂得| 亚洲综合色网站| 尤物九九久久国产精品的特点| 美女主播精品视频一二三四| 亚洲精品之草原avav久久| 国产精品av久久久久久麻豆网| 欧美日韩亚洲综合在线| 激情成人在线视频| 欧美三级午夜理伦三级中文幕| 欧美精品久久久久久| 欧美了一区在线观看| 久久99伊人| 久热这里只精品99re8久| 国产亚洲第一区| 欧美日韩国产123区| 欧美视频免费在线观看| 久久久久免费视频| 亚洲福利久久| 欧美高潮视频| 亚洲亚洲精品三区日韩精品在线视频| 亚洲女爱视频在线| 亚洲精品网址在线观看| 一区二区三区国产在线观看| 免费欧美高清视频| 另类av导航| 欧美日韩一区成人| 久久久久久亚洲精品不卡4k岛国| 免费不卡亚洲欧美| 久久久久久久综合色一本| 欧美精品色综合| 校园春色国产精品| 国产一区二区高清不卡| 欧美日韩日本网| 久久久久久电影| 国产精品欧美日韩一区| 国产乱码精品| 亚洲片国产一区一级在线观看| 国产一区二三区| 国产日韩亚洲欧美综合| 久久国产夜色精品鲁鲁99| 免费在线看一区| 欧美一区三区二区在线观看| 亚洲精品一区在线| 欧美91福利在线观看| 国产精品久久久久久久第一福利| 麻豆成人av| 欧美日韩国产综合久久| 亚洲高清免费在线| 国产一区二区三区在线观看精品| 99综合在线| 国产精品久久亚洲7777| 亚洲激情在线激情| 亚洲激情黄色| 久久久久久亚洲精品中文字幕| 一本久久知道综合久久| 亚洲国产成人久久综合一区| 亚洲一区二区av电影| 亚洲精品日韩欧美| 国产精品一区在线播放| 久久夜色精品亚洲噜噜国产mv| 久久久91精品国产一区二区精品| 国产精品久久久久久久久久尿| 欧美日韩四区| 国产精品免费aⅴ片在线观看| 国产精品va| 亚洲二区在线观看| 国产免费一区二区三区香蕉精| 激情欧美日韩一区| 国产视频一区二区在线观看|