日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

BEE1038代做、代寫Python設計程序

時間:2024-03-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assignment [100 marks, weight: 30%]
BEE1038: Introduction to Data Science in Economics
Assignment Deadline: Thursday 28th March at 15:00 (GMT)
In this assignment, you will demonstrate your understanding and mastery of programming in
Python using data science tools.
What you will have learnt by the end of Week 6/7 should cover almost everything you will need,
and what you learnt is already enough to start working on some problems. If you are stuck then
read through the notebooks again. If you are still unsure, then have a look online. Google and
Stack OverFlow are your friends!
The grade of this assignment contributes 30% towards your overall grade in the course. The
following aspects need to be shown:
● Basic Python code and functions
● Manipulation and calculations on NumPy arrays and Pandas data frame
● Preparing and preprocessing data.
● Doing a basic plot, and changing plot markers, colors, etc.
● Improving and extending analysis.
● Ability to elaborate on your approach and explain your rationale when completing the
assignment.
Your submission will be a compressed file (.zip) containing the following files:
1. A copy of your Python script named your_name_solution.ipynb (done in Jupyter
Notebook). For example, my notebook file will be named cecilia_chen_solution.ipynb.
2. Same copy printed as a PDF, your_name_solution_code.pdf. Take a look at this link for
instruction on exporting Jupyter Notebok as PDF.
3. Three .png images of your final plots: one that replicates the plot in Problem 4 (p4.png),
one that replicates the plots in Problem 5 (H) (p5h.png), and those that show any
additional analysis in Problem 6 (p6a.png, etc.).
You must explain your approach and rationale using the markdown and/or comments in code.
Any block code or results without appropriate explanation will be panelized. Your scripts must
be sufficient to reproduce your answers to all questions and plots. You are responsible for
making sure that your Jupyter Notebook file will open without errors. Submissions that do not
open may receive a zero.
Collaboration & Misconduct: You are encouraged to think about this assignment in groups or ask
each other for help. If you do, you should do the following: 1) write your own code (no code
copying from others), 2) Report the names of all people that you worked with in your submission,
3) if you received help from someone, write that explicitly, 4) plagiarism of code or writeup will
not be tolerated; do not copy blocks of code in your answers, and 5) do not post your solutions
online (even after the release of your marks). For those who want to evidence your experience
to recruiters, make sure you share a private link to your project/work (or undiscoverable link). If
we can find your answers online anytime until September this year, you will be reported for
misconduct.
The University takes poor academic practice and academic misconduct very seriously and expects
all students to behave in a manner which upholds the principles of academic honesty. Please
make sure you familiarize yourself with the general guidelines and rules from this link1 and this
link2
.
Problem 1 [15 marks]
Write a function that accepts a number n as an input, and it returns n rows that look like the
following pattern. Run your function for n = 21 (the output below is for n=12 and n = 21).
1 http://as.exeter.ac.uk/academic-policy-standards/tqa-manual/aph/managingacademicmisconduct/
2
https://vle.exeter.ac.uk/pluginfile.php/1794/course/section/2**99/A%20Guide%20to%20Citing%2C%20Referencing
%20and%20Avoiding%20Plagiarism%20V.2.0%202014.pdf
 Output when n = 12 output when n = 21
Problem 2 [15 marks]
Solve all the following questions.
A. Write a function that you will call min_distance() that takes as input a list of integers and
returns the minimum (absolute) difference between any two numbers in that list.
For example, min_distance([5,9,1,3]) should return 2
While, min_distance([3,4,1,1]) should return 0
B. Using the min_distance() function you have created, create another function
max_min_distance() that takes a list of lists of integers as an input, and it returns the
maximum value among all the minimum distance values calculated on the inner-lists
(output of min_distance() for each inner-list).
For example, max_min_distance([[5,9,1,3],[3,4,1,1]]) should return 2
C. Demonstrate that your max_min_distance() function works well on the following input:
[[5,2,1,6],[10,0,4],[9,18,1],[100,100,27,9,18],[28,30]]
D. Set the NumPy random seed to 99 (Use the random generator method:
numpy.random.default_rng(seed)). Generate a **dimensional NumPy array of size 1000
consisting of random integers between 0 and 3000 (both included). Reshape this array
into a 2-dimensional array of 50 rows (i.e., 50x20). Test your function on this input.
E. Use the %timeit function to calculate the time for your max_min_distance() algorithm to
run on the input from D.
Problem 3 [20 marks]
A. Set the NumPy random seed to 120.
B. Create a 3x20x5 array (3 depths, 20 rows, 5 columns) of random integers between
-20 and 100 (both included) and print it.
C. For this part, consider the first depth of the array (i.e., first dimension is 0). Print the
number of elements that are strictly more than 60 in each column (of the first depth).
D. For this part, consider the third depth of the array (i.e., first dimension is 2). Print the
number of rows (of the third depth) that contain any positive values.
Problem 4 [20 marks]
In this problem, you need to reproduce the plot shown below, as accurately as possible, from
scratch. First, you will need to generate your x-axis data, and calculate the two series of your yaxis data using the simple functions shown in the legend.
Problem 5 [20 marks]
In this problem, you will use a dataset called harrypotter_dataset. Please follow the instructions
below for your data analysis.
A. Load the harrypotter_dataset.csv file in your notebook, and print the dataset. Print the
number of rows.
B. Print the column headings of the data set.
C. You will notice that column headings have an unnecessary leading space (e.g., “ Book
index”. Write a code to remove the leading space from every column name in the dataset,
replace the space between the column name with _, and convert all the column headings
to lower case. Save changes to your data frame. Re-run code in B to make sure it is solved
now. For example, the original column name is “ Book index”. It should be “book_index”
at the end.
D. Create a new column: ‘runtime_in_hours’ using the column ‘Runtime (in minutes)’. The
new column should have floating numbers (e.g., 150 minutes à 2.5 hours).
E. Create a new column: ‘is_same_date_uk_us’: boolean (True : “UK Movie release date” is
the same as “US Movie release date”, False : otherwise)
F. Calculate the following:
a. Suppose you chose to read one chapter from one of the books at random. What
is the probability that this chapter belongs to Book number 7? (hint: write a code
that divides the number of chapters in Book number 7 by the total number of
chapters)
b. Suppose you chose to watch one minute of one of the movies at random. What is
the probability that it belongs to one of the following movies 1st, 3rd, 5th, or 7th ?
c. What is the percentage of the movies that were released on the same date in both
the UK and the US?
G. Create a new data frame, df_nineties, which contains data (all columns) for books
released before 2000 i.e., ‘Book release year’ is strictly smaller than 2000.
H. Reproduce the following plot: you will get marks for reproducing the plot as accurately as
possible, taking into consideration the steps undertaken to reach the final figure.
Problem 6 [10 marks]
For this problem, use the same data from Problem 5 to perform compelling extra analysis.
Perhaps make use of the other columns in the harrypotter_dataset data set. You will get marks
if you find a compelling and interesting visualisation (one plot is enough, but you may produce
as many as you want if they are all tied into one main idea). Make sure you provide textual
description and/or analysis of the plot. You can also collect additional data to compliment your
analyses. For instance, you can add new columns to the dataset such as a cast list. Please be sure
to write down the source of your additional data collected.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:越南投資簽證年限(如何申請越南投資簽證)
  • 下一篇:ENGG1330代做、Python程序設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产精品久久久久久久久久三级| 国产欧美精品在线| 亚洲欧洲日本专区| 久久久国产成人精品| 国产午夜精品久久久久久免费视| 久久频这里精品99香蕉| 久久精品女人天堂| 亚洲中无吗在线| 欧美激情成人在线视频| 久久亚洲色图| 韩日欧美一区二区三区| 欧美久久一区| 久久国产综合精品| 亚洲精选中文字幕| 亚洲五月婷婷| 免费短视频成人日韩| 玖玖玖免费嫩草在线影院一区| 欧美影院成年免费版| 欧美一区国产二区| 99国产精品久久| 国产精品久久久久久久app| 国产一区二区0| 亚洲第一搞黄网站| 狠狠综合久久av一区二区老牛| 欧美乱人伦中文字幕在线| 亚洲永久字幕| 久久精品一区四区| 国产精品美女久久久浪潮软件| 另类激情亚洲| 亚洲在线一区| 国产精品尤物福利片在线观看| 夜夜爽av福利精品导航| 美脚丝袜一区二区三区在线观看| 久久人人爽人人爽爽久久| 国内精品一区二区三区| 欧美在线视频一区| 黄色欧美成人| 亚洲欧美日本另类| 欧美在线一级va免费观看| 在线精品视频免费观看| 亚洲一区二区久久| 欧美日韩亚洲不卡| 亚洲人成网站精品片在线观看| 一本色道久久加勒比88综合| 亚洲国产一成人久久精品| 一区二区三区我不卡| 国产精品午夜久久| 国内久久精品| 亚洲高清视频一区| 国产婷婷色综合av蜜臀av| 在线欧美日韩| 亚洲级视频在线观看免费1级| 午夜精品久久久久99热蜜桃导演| 黄色在线一区| 亚洲资源在线观看| 一区二区三区色| 国产日韩欧美一区| 欧美日韩精品一区视频| 欧美日韩亚洲系列| 欧美先锋影音| 亚洲一区二区黄色| 亚洲小视频在线| 亚洲人成小说网站色在线| 欧美日韩在线视频首页| 亚洲调教视频在线观看| 欧美午夜视频| 在线 亚洲欧美在线综合一区| 欧美影片第一页| 久久艳片www.17c.com| 欧美激情国产日韩精品一区18| 国产精品你懂得| 欧美日韩在线一区二区三区| 在线不卡欧美| 性色一区二区| 亚洲精品三级| 99精品国产在热久久下载| 久久精品一区| 久久久久久亚洲精品杨幂换脸| 久久久噜噜噜| 美女精品自拍一二三四| 国产欧美日韩麻豆91| 亚洲欧美在线aaa| 在线国产欧美| 六月婷婷一区| 99视频精品| 亚洲久久一区二区| 亚洲伊人网站| 欧美影片第一页| 国产亚洲欧美日韩在线一区| 亚洲国产日韩在线| 欧美国内亚洲| 亚洲国产高潮在线观看| 亚洲视频电影在线| 国产精品theporn| 午夜精品短视频| 欧美午夜宅男影院| 亚洲一级黄色片| 国产日韩一区二区| 伊人精品成人久久综合软件| 国产亚洲精久久久久久| 韩国精品一区二区三区| 久久久蜜桃精品| 国产精品人人爽人人做我的可爱| 日韩亚洲欧美成人一区| 国产精品制服诱惑| 亚洲国产aⅴ天堂久久| 亚洲小说区图片区| 狠狠入ady亚洲精品经典电影| 欧美一区二区三区视频在线观看| 一区二区三区四区在线| 亚洲一区二区三区在线视频| 国内成人精品2018免费看| 欧美一区二区精品久久911| 国产伦理精品不卡| 国产精品久久久久7777婷婷| 欧美日韩国内自拍| 久久综合网hezyo| 久久免费偷拍视频| 欧美性大战xxxxx久久久| 午夜精品国产更新| 久久激情综合网| 欧美精品www| 欧美精品日韩| 国产美女精品| 久久国内精品视频| 欧美精品亚洲精品| 欧美日韩精品综合在线| 亚洲精品一区二区三区在线观看| 国内自拍一区| 激情另类综合| 国产精品久久久对白| 亚洲一区二区在线播放| 黑人中文字幕一区二区三区| 亚洲欧美综合v| 亚洲二区视频| 欧美激情精品久久久久久大尺度| 亚洲国产欧洲综合997久久| 在线 亚洲欧美在线综合一区| 欧美aa在线视频| 国产欧美精品日韩精品| 亚洲一区二区三区777| 亚洲日韩欧美视频一区| 亚洲尤物精选| 亚洲精品美女在线| 亚洲免费在线精品一区| 亚洲伊人色欲综合网| 国产精自产拍久久久久久| 国产精品成人免费精品自在线观看| 国产精品久久久久久福利一牛影视| 国产性天天综合网| 激情久久中文字幕| 国产亚洲精品激情久久| 亚洲免费电影在线观看| 亚洲天堂网站在线观看视频| 欧美一区二区福利在线| 国模 一区 二区 三区| 国产精品久久久久永久免费观看| 国产精品亚洲一区二区三区在线| 亚洲欧美偷拍卡通变态| 久久成人精品一区二区三区| 亚洲免费精品| 国产精品视频yy9099| 久久久久九九视频| 久久精品99无色码中文字幕|