日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

BEE1038代做、代寫Python設計程序

時間:2024-03-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assignment [100 marks, weight: 30%]
BEE1038: Introduction to Data Science in Economics
Assignment Deadline: Thursday 28th March at 15:00 (GMT)
In this assignment, you will demonstrate your understanding and mastery of programming in
Python using data science tools.
What you will have learnt by the end of Week 6/7 should cover almost everything you will need,
and what you learnt is already enough to start working on some problems. If you are stuck then
read through the notebooks again. If you are still unsure, then have a look online. Google and
Stack OverFlow are your friends!
The grade of this assignment contributes 30% towards your overall grade in the course. The
following aspects need to be shown:
● Basic Python code and functions
● Manipulation and calculations on NumPy arrays and Pandas data frame
● Preparing and preprocessing data.
● Doing a basic plot, and changing plot markers, colors, etc.
● Improving and extending analysis.
● Ability to elaborate on your approach and explain your rationale when completing the
assignment.
Your submission will be a compressed file (.zip) containing the following files:
1. A copy of your Python script named your_name_solution.ipynb (done in Jupyter
Notebook). For example, my notebook file will be named cecilia_chen_solution.ipynb.
2. Same copy printed as a PDF, your_name_solution_code.pdf. Take a look at this link for
instruction on exporting Jupyter Notebok as PDF.
3. Three .png images of your final plots: one that replicates the plot in Problem 4 (p4.png),
one that replicates the plots in Problem 5 (H) (p5h.png), and those that show any
additional analysis in Problem 6 (p6a.png, etc.).
You must explain your approach and rationale using the markdown and/or comments in code.
Any block code or results without appropriate explanation will be panelized. Your scripts must
be sufficient to reproduce your answers to all questions and plots. You are responsible for
making sure that your Jupyter Notebook file will open without errors. Submissions that do not
open may receive a zero.
Collaboration & Misconduct: You are encouraged to think about this assignment in groups or ask
each other for help. If you do, you should do the following: 1) write your own code (no code
copying from others), 2) Report the names of all people that you worked with in your submission,
3) if you received help from someone, write that explicitly, 4) plagiarism of code or writeup will
not be tolerated; do not copy blocks of code in your answers, and 5) do not post your solutions
online (even after the release of your marks). For those who want to evidence your experience
to recruiters, make sure you share a private link to your project/work (or undiscoverable link). If
we can find your answers online anytime until September this year, you will be reported for
misconduct.
The University takes poor academic practice and academic misconduct very seriously and expects
all students to behave in a manner which upholds the principles of academic honesty. Please
make sure you familiarize yourself with the general guidelines and rules from this link1 and this
link2
.
Problem 1 [15 marks]
Write a function that accepts a number n as an input, and it returns n rows that look like the
following pattern. Run your function for n = 21 (the output below is for n=12 and n = 21).
1 http://as.exeter.ac.uk/academic-policy-standards/tqa-manual/aph/managingacademicmisconduct/
2
https://vle.exeter.ac.uk/pluginfile.php/1794/course/section/2**99/A%20Guide%20to%20Citing%2C%20Referencing
%20and%20Avoiding%20Plagiarism%20V.2.0%202014.pdf
 Output when n = 12 output when n = 21
Problem 2 [15 marks]
Solve all the following questions.
A. Write a function that you will call min_distance() that takes as input a list of integers and
returns the minimum (absolute) difference between any two numbers in that list.
For example, min_distance([5,9,1,3]) should return 2
While, min_distance([3,4,1,1]) should return 0
B. Using the min_distance() function you have created, create another function
max_min_distance() that takes a list of lists of integers as an input, and it returns the
maximum value among all the minimum distance values calculated on the inner-lists
(output of min_distance() for each inner-list).
For example, max_min_distance([[5,9,1,3],[3,4,1,1]]) should return 2
C. Demonstrate that your max_min_distance() function works well on the following input:
[[5,2,1,6],[10,0,4],[9,18,1],[100,100,27,9,18],[28,30]]
D. Set the NumPy random seed to 99 (Use the random generator method:
numpy.random.default_rng(seed)). Generate a **dimensional NumPy array of size 1000
consisting of random integers between 0 and 3000 (both included). Reshape this array
into a 2-dimensional array of 50 rows (i.e., 50x20). Test your function on this input.
E. Use the %timeit function to calculate the time for your max_min_distance() algorithm to
run on the input from D.
Problem 3 [20 marks]
A. Set the NumPy random seed to 120.
B. Create a 3x20x5 array (3 depths, 20 rows, 5 columns) of random integers between
-20 and 100 (both included) and print it.
C. For this part, consider the first depth of the array (i.e., first dimension is 0). Print the
number of elements that are strictly more than 60 in each column (of the first depth).
D. For this part, consider the third depth of the array (i.e., first dimension is 2). Print the
number of rows (of the third depth) that contain any positive values.
Problem 4 [20 marks]
In this problem, you need to reproduce the plot shown below, as accurately as possible, from
scratch. First, you will need to generate your x-axis data, and calculate the two series of your yaxis data using the simple functions shown in the legend.
Problem 5 [20 marks]
In this problem, you will use a dataset called harrypotter_dataset. Please follow the instructions
below for your data analysis.
A. Load the harrypotter_dataset.csv file in your notebook, and print the dataset. Print the
number of rows.
B. Print the column headings of the data set.
C. You will notice that column headings have an unnecessary leading space (e.g., “ Book
index”. Write a code to remove the leading space from every column name in the dataset,
replace the space between the column name with _, and convert all the column headings
to lower case. Save changes to your data frame. Re-run code in B to make sure it is solved
now. For example, the original column name is “ Book index”. It should be “book_index”
at the end.
D. Create a new column: ‘runtime_in_hours’ using the column ‘Runtime (in minutes)’. The
new column should have floating numbers (e.g., 150 minutes à 2.5 hours).
E. Create a new column: ‘is_same_date_uk_us’: boolean (True : “UK Movie release date” is
the same as “US Movie release date”, False : otherwise)
F. Calculate the following:
a. Suppose you chose to read one chapter from one of the books at random. What
is the probability that this chapter belongs to Book number 7? (hint: write a code
that divides the number of chapters in Book number 7 by the total number of
chapters)
b. Suppose you chose to watch one minute of one of the movies at random. What is
the probability that it belongs to one of the following movies 1st, 3rd, 5th, or 7th ?
c. What is the percentage of the movies that were released on the same date in both
the UK and the US?
G. Create a new data frame, df_nineties, which contains data (all columns) for books
released before 2000 i.e., ‘Book release year’ is strictly smaller than 2000.
H. Reproduce the following plot: you will get marks for reproducing the plot as accurately as
possible, taking into consideration the steps undertaken to reach the final figure.
Problem 6 [10 marks]
For this problem, use the same data from Problem 5 to perform compelling extra analysis.
Perhaps make use of the other columns in the harrypotter_dataset data set. You will get marks
if you find a compelling and interesting visualisation (one plot is enough, but you may produce
as many as you want if they are all tied into one main idea). Make sure you provide textual
description and/or analysis of the plot. You can also collect additional data to compliment your
analyses. For instance, you can add new columns to the dataset such as a cast list. Please be sure
to write down the source of your additional data collected.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:越南投資簽證年限(如何申請越南投資簽證)
  • 下一篇:ENGG1330代做、Python程序設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美精品videossex性护士| 久久久久九九九九| 欧美日韩中国免费专区在线看| 国产一区二区三区丝袜| 欧美日韩一区二区三区四区五区| 亚洲在线成人| 国产精品大片免费观看| 欧美久久婷婷综合色| 亚洲综合精品四区| 精品88久久久久88久久久| 国产一区日韩欧美| 在线观看亚洲一区| 极品少妇一区二区三区精品视频| 国产精品无人区| 久久久av水蜜桃| 欧美激情va永久在线播放| 亚洲区免费影片| 国产精品久久久久久久久久免费| 国产视频丨精品|在线观看| 欧美欧美在线| 免费成人黄色片| 久久人人爽国产| 国产精品色婷婷| 国产精品国产精品国产专区不蜜| 在线亚洲自拍| 欧美大片在线看免费观看| 午夜亚洲福利在线老司机| 欧美一区二区三区婷婷月色| 久久久精品视频成人| 黄色成人av| 欧美一区二区三区婷婷月色| 久久综合精品一区| 亚洲国产视频一区| 一区二区久久| 久久一日本道色综合久久| 亚洲全黄一级网站| 亚洲影音一区| 久久久久久精| 亚洲国产成人porn| 欧美精品久久久久久久久老牛影院| 国产精品高潮在线| 午夜精品视频| 亚洲精品久久嫩草网站秘色| 欧美性jizz18性欧美| 亚洲欧洲日本一区二区三区| 一区二区三区欧美激情| 国产精品99一区| 久久精品视频播放| 久久精品网址| 性久久久久久久| 欧美大片专区| 亚洲欧美激情一区| 亚洲国产精品热久久| 国产精品私人影院| 亚洲美女一区| 欧美激情精品久久久久久免费印度| 欧美大片在线看| 狠狠色综合色区| 亚洲看片网站| 牛牛精品成人免费视频| 激情文学综合丁香| 蜜臀va亚洲va欧美va天堂| 久久国产精品毛片| 欧美精品18| 国产亚洲激情视频在线| 欧美三级电影网| 亚洲精品中文字幕在线| 欧美日韩国产成人在线免费| 欧美国产日韩免费| 久久高清福利视频| 久久gogo国模啪啪人体图| 国产综合久久久久久鬼色| 国产一区二区三区在线播放免费观看| 亚洲一区二区三区三| 久久艳片www.17c.com| 欧美日本免费| 国产精品一区二区a| 先锋a资源在线看亚洲| 激情丁香综合| 在线观看亚洲专区| 亚洲午夜国产一区99re久久| 免费观看在线综合| 一二三区精品| 亚洲新中文字幕| 国产女人18毛片水18精品| 亚洲国产日韩欧美在线图片| 欧美激情91| 一区二区亚洲精品国产| 久久美女艺术照精彩视频福利播放| 日韩视频中午一区| 好男人免费精品视频| 亚洲影院色在线观看免费| 久久se精品一区精品二区| 国产欧美日韩三区| 欧美精品在线看| 国产精品一区二区三区观看| 欧美一区二区视频在线观看| 亚洲人成人77777线观看| 亚洲一区综合| 久久精品水蜜桃av综合天堂| 欧美黑人在线观看| 亚洲一区激情| 亚洲视频网在线直播| 欧美日韩ab| 亚洲乱码国产乱码精品精可以看| 国产精品国色综合久久| 在线观看视频一区二区欧美日韩| 国外成人免费视频| 国产精品啊v在线| 久久久久久久尹人综合网亚洲| 亚洲午夜一二三区视频| aaa亚洲精品一二三区| 欧美国产日韩二区| 黑人极品videos精品欧美裸| 精品成人久久| 欧美激情视频给我| 亚洲高清久久久| 欧美www视频在线观看| 亚洲国产天堂久久综合| 亚洲精品视频中文字幕| 美脚丝袜一区二区三区在线观看| 亚洲看片免费| 亚洲视频观看| 欧美精品在线极品| 亚洲欧美日韩国产成人精品影院| 亚洲二区视频在线| 欧美一级片一区| 欧美wwwwww| 国产精品人成在线观看免费| 久久夜色精品| 狠色狠色综合久久| 久久激情视频免费观看| 99在线视频精品| 久久精品九九| 免费观看在线综合色| 欧美乱大交xxxxx| 国产免费成人av| 亚洲国产日韩一级| 欧美黑人一区二区三区| 樱桃成人精品视频在线播放| 欧美视频日韩视频| 亚洲精选大片| 欧美三级不卡| 欧美激情亚洲精品| 国语自产精品视频在线看一大j8| 国产日韩欧美亚洲一区| 欧美精品三级日韩久久| 国产精品午夜国产小视频| aa日韩免费精品视频一| 亚洲自拍16p| 宅男在线国产精品| 一区二区欧美在线观看| 欧美中文字幕精品| 亚洲精品少妇30p| 影音先锋亚洲一区| 国产一区二区三区成人欧美日韩在线观看| 欧美日韩mp4| 久久国产精品免费一区| 在线一区欧美| 欧美激情视频一区二区三区免费| 欧美午夜精品一区| 久久国产加勒比精品无码| 国语对白精品一区二区| 中日韩美女免费视频网站在线观看|