日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CSEN 331、代做 C++程序語言

時間:2024-03-16  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Programming Assignment CSEN 331 Wireless & Mobile Networks
General Guidelines
➢ Programming projects are individual assignments; each student should write his/her own code.
➢ This assignment should be written only in C programing language.
➢ Each project requires a demo, during which the student should explain how the code
works.
➢ Demos are part of the grade. The student will only receive full credit if the demo has proper results.
➢ In addition to the demo, each student should submit the source code, input/output files, and a README.txt file containing instructions on how to compile and run your source code.
➢ The program should be turned in on or before the deadline; demo must be performed on or before the deadline but after the program files have been turned in.
➢ Here are a couple of useful links to point you to the right direction for an Introduction to Socket Programming
http://beej.us/guide/bgnet/
https://www.youtube.com/watch?v=Emuw71lozdA
1. Client using UDP protocol for sending information to the Access Point (AP)
One client connects to one Access point.
The frame is recognized in UDP payload by two fields which contain identifiers:
Start of frame identifier .... 0XFFFF End of frame identifier ..... 0XFFFF
After the start of frame, the IEEE 802.11 frame is included and then the End of frame identifier will be attached, see Fig.1 in chapter 1.3.
For the FCS (Frame Check Sequence) calculation use the following function which will output FCS result for each frame sent by AP (Access Point) or client, see section 1.2.
     CSEN 331 Programming Assignment
1

 1.1 Operation:
a) Transmit:
For each frame which is transmitted by client or AP (Access Point) the FCS should be calculated
based on the function in chapter 1.2, and then in the FCS field of IEEE 802.11 frame inserted, the whole IEEE 802.11 frame will be included in the UDP payload field.
The client should start an ack_timer at the time the frame is sent to the AP (Access Point)), if the response related to request message (See below the list of expected response messages from AP) for each frame has not been received during ack_timer period by client before expiration of timer, then client should retransmit the frame that was sent before and restart the timer.
The timer can be set at 3 seconds (recommended) and a retry counter should be used for resending the frame. If the response for the frame does not arrive before the timeout, the client will retransmit the frame and restart the ack_timer, and the ack_timer should be reset for a total of 3 times.
If no response was received from the server after resending the same frame 3 times, the client should generate the following message and display on the screen,
“Access Point does not respond”.
b) Receive:
For each frame which is Received by client or AP (Access Point) the FCS should be re-calculated and compared with the FCS received field of IEEE 802.11 frame, if it is correct then the received frame will be accepted and according to the request message the response will be generated and sent to the client, else should AP generate an error message and display on the screen.
Note: For all frame exchanges between mobile client/AP and between AP/mobile client should use Checksum verification for transmitted and received frames (function in chapter 1.2).
List of request/response messages
The table 1 contains the list of messages:
       Client
 Access Point
   Association Request Probe Request
RTS (Request To Send) Data
Association Response Probe Response
CTS (Clear To Send) ACK (Acknowledge)
         Error Message, to be generated when no proper response for each frame after 3 times timer expires.
    Table 1. List of request/response messages
CSEN 331 Programming Assignment
2

1.2. Checksum function for calculation of transmitted and received frames:
The following function for frame checksum calculation will be used, you will include this function in your code.
This FCS calculation function should be added in your code: #include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h> #include <unistd.h>
/*
* Takes in an input string and generates a **-bit checksum hash value of type uint**_t
* This function is internally called by the function getCheckSumValue(); so not to be called directly by
developer
* Input type: String
* Output type: uint**_t */
uint**_t generate**bitChecksum(const char* valueToConvert) { uint**_t checksum = 0;
while (*valueToConvert) {
checksum += *valueToConvert++; checksum += (checksum << 10); checksum ^= (checksum >> 6);
}
checksum += (checksum << 3); checksum ^= (checksum >> 11); checksum += (checksum << 15); return checksum;
}
/*
* This function can be called by the developer to generate a **-bit checksum directly from the pointer to your
frame structure
* The function is independent of the contents/data types used in your frame structure
* It works based on the bits in your structure
* IMPORTANT NOTE & Hint: For accurate results, you must use __attribute__((packed)) while creating your
Frame structure
* to avoid additional padding bytes which occur in C language structures
* Input: Pointer to the frame structure, the size of the frame structure, number of bytes to skip from the start
and end (for crc calculation)
* Providing example input for reference: uint**_t checksum = getCheckSumValue(&yourFrame,
sizeof(yourFrame), bytesToSkipFromStart, bytesToSkipFromEnd)
* Hint: bytesToSkipFromEnd is provided (for instance) since the CRC computation should not include the FCS
field of the payload
* Output: uint ** bit final Check Sum value */
uint**_t getCheckSumValue(const void *ptr, size_t size, ssize_t bytesToSkipFromStart, size_t bytesToSkipFromEnd) {
const unsigned char *byte = (const unsigned char *)ptr;
// binaryString[] is a logical representation of 1 byte. Each character in it represents 1 bit.
// Do not confuse with the size of character in C language (which is 1 byte). This is just a representation. char binaryString[9]; // One additional character for the null terminator
binaryString[8] = '\0'; // Null terminator definition
  CSEN 331 Programming Assignment
3

char *buffer = malloc(1); // Allocates space for an empty string (1 byte for the null terminator) buffer[0] = '\0'; // Initializes an empty string
for (size_t i = 1; i <= size; i++) { for (int j = 7; j >= 0; j--) {
int bit = (byte[i - 1] >> j) & 1;
binaryString[7 - j] = bit + '0'; // Converts bit to character '0' or '1' }
buffer = realloc (buffer, strlen(buffer) + strlen(binaryString) + 1); // Resizes buffer to fit the concatenated result
strcat(buffer, binaryString); }
buffer[strlen(buffer)-(bytesToSkipFromEnd*8)] = '\0';
memmove(buffer, buffer + (bytesToSkipFromStart*8), strlen(buffer) - (bytesToSkipFromStart*8) + 1); //+1 for null terminator
// printf("\nGenerated string: %s\n", buffer);
// printf("\nSize of generated string in bytes: %zu\n", strlen(buffer)/8);
uint**_t checkSumValue = generate**bitChecksum(buffer). free(buffer); // Freeing memory allocated by malloc.
return checkSumValue;
}
CSEN 331 Programming Assignment
4

1.3 Frame Format:
UDP Payload which will contain IEEE 802.11 frame:
Bytes: 2 2346 (Maximum) 2
   Start of Frame ID
 Payload
 End of Frame ID
    Bytes2 2 6 6 6 2 6 0-2312 4
Bit 0 Bit 15
bits2 2 4 1 1 1 1 1 1 1 1
Figure 1: UDP Payload which will contain IEEE 802.11 frame
 Frame Control
 Duration ID
 Address 1
 Address 2
 Address 3
 Sequence Control
 Address 4
 Pay load
 FCS
   Protocol version
 Type
 Sub type
 To DS
 From DS
 More Frags
 Retry
   Power More
WEP ManaIgEemEeEn 80D2a.1ta1 frame.
t
 order
   CSEN 331 Programming Assignment
5

1.4 Procedure:
Initially client and server will set the following fields based on frame type and sub-type:
Set Protocol version: Current protocol version is 0. More Fragment: 0
Retry: Disabled
Power management: Disabled
More Data: 0
WEP: 0
Order: 0
Sequence Control: 0000
Address 4: Bridge address set to 000000000000
To DS and From DS fields: Set these fields for each frame you send properly:
• Data From client to AP
ToDS, To AP (Infrastructure Network) =1
From DS, From AP (Infrastructure Network) =0
• From AP to client:
ToDS, To AP (Infrastructure Network) =0
From DS, From AP (Infrastructure Network) =1
FCS (Frame Check Sequence): use the function mentioned in chapter 1.2. All the above fields should be set properly for each frame type and sub
type.
1. Client sends Association Request:
Set properly the fields for IEEE 802.11 frame in chapter 1.3. AP will fill in the sub type properly.
Set type = 00
Set sub type = 0000
Set Duration ID =0
Address 1 field: Final receiver address MAC address (example: AABBCCDDEEDD)
Address 2: Originator Address, (example:1245CCDDEE88) Address 3: Access point address (example: AABBCCDDEEDD)
Client will calculate FCS (Frame Check Sequence) using the FCS function in chapter 1.2.
    CSEN 331 Programming Assignment
6

2. AP (Access Point) sends Association Response to Client:
Recalculate FCS (Frame Check Sequence) using the FCS function in chapter 1.2.
The received AP compares recalculated and received FCS values, if they are equal then will proceed with the following steps:
AP will set the subtype properly.
Set type = 00
Set sub type = 0001
Set Duration ID =XXXX <<< set any two Bytes Hex value to the user, this will be the association ID
Address 1 field: Final receiver address MAC address (example: 1245CCDDEE88) Address 2: Originator address, is AP (example: AABBCCDDEEDD)
Address 3: Access Point address (example: AABBCCDDEEDD)
All fields should be set properly.
Set properly the fields for IEEE 802.11 frame in chapter 1.4.
Calculate for this new frame the FCS (Frame Check Sequence) using the FCS function in chapter 1.2.
3. Client sends Probe Request:
Client will fill in the type and sub type properly. Set type = 00
Set sub type = 0100
Set Duration ID =0
Address 1 field: Final receiver address MAC address (example: AABBCCDDEEDD) Address 2: Originator Address, AP (Access point address)
(example: 1245CCDDEE88)
Address 3: Access point address (example: AABBCCDDEEDD)
The client will fill in the Address 2 field with its own MAC address.
Set properly the fields for IEEE 802.11 frame in chapter 1.4. FCS (Frame Check Sequence): use the FCS function in chapter 1.2.
4. AP (Access Point) Response sends Probe Response to Client:
Prior to sending response the AP will recalculate the FCS of the received Probe Request frame by using the FCS function in chapter 1.2.
Set properly the fields for IEEE 802.11 frame in chapter 1.4.
Set Duration ID =XXXX <<< set any two Bytes Hex value to the user, this will be the association ID
The received AP compares recalculated and received FCS values, if they are equal then will proceed with the following steps:
Set properly the fields for IEEE 802.11 frame in chapter 1.3.
Address 1 field: Final receiver address MAC address (example: 1245CCDDEE88) Address 2: Originator Address, AP (Access point address)
   CSEN 331 Programming Assignment
7

(example: AABBCCDDEEDD)
Address 3: Access point address (example: AABBCCDDEEDD)
FCS (Frame Check Sequence): use the FCS function in chapter 1.2.
5. Client sends RTS:
Set properly the fields for IEEE 802.11 frame in chapter 1.4.
Address 1 field: Final receiver address MAC address (example: AABBCCDDEEDD) Address 2: Originator Address, (example:1245CCDDEE88)
Address 3: Access point address (example: AABBCCDDEEDD)
Set type =01
Set sub type= 1011
Set Duration ID =4
Set properly the fields for IEEE 802.11 frame in chapter 1.4.
Calculate for this new frame the FCS (Frame Check Sequence) using the FCS function in chapter 1.2.
6. AP (Access Point) sends CTS Response to Client:
Recalculate received FCS (Frame Check Sequence) using the FCS function in chapter 1.2. The received AP compares recalculated and received FCS values, if they are equal then will proceed with the following steps to prepare the frame.
Set properly the fields for IEEE 802.11 frame in chapter 1.4.
Address 1 field: Final receiver address MAC address (example: 1245CCDDEE88) Address 2: Originator address, is AP (example: AABBCCDDEEDD)
Address 3: Access Point address (example: AABBCCDDEEDD)
Set Type = 01
Set Sub Type = 1100
Set Duration ID =3
Set properly the fields for IEEE 802.11 frame in chapter 1.4.
Calculate for this new frame the FCS (Frame Check Sequence) using the FCS function in chapter 1.2.
7. Client sends one Data Frame:
The received client compares recalculated and received FCS values, if they are equal then will proceed with the following steps:
Address 1 field: Final receiver address MAC address (example: AABBCCDDEEDD) Address 2: Originator Address, (example:1245CCDDEE88)
Address 3: Access point address (example: AABBCCDDEEDD) Set Type = 10
Set Sub Type = 0000
Set Duration ID =2
The 802.11 payload can be any hex value the maximum length is 2312 Bytes, if less than this value fills in the rest with 0XFF.
Set properly the fields for IEEE 802.11 frame in chapter 1.4.
      CSEN 331 Programming Assignment
8

Calculate for this new frame the FCS (Frame Check Sequence) using the FCS function in chapter 1.2.
8. AP (Access Point) sends ACK to Client:
Recalculate FCS (Frame Check Sequence) using the FCS function in chapter 1.2. to calculate FCS.
The received AP compares recalculated and received FCS values, if they are equal then will proceed with the following steps to send ACK:
Address 1 field: Final receiver address MAC address (example: 1245CCDDEE88) Address 2: Originator address, is AP (example: AABBCCDDEEDD)
Address 3: Access Point address (example: AABBCCDDEEDD)
Set Type = 01
Set Sub Type = 1101
Set Duration ID =1
Set properly the fields for IEEE 802.11 frame in chapter 1.4.
Calculate for this new frame the FCS (Frame Check Sequence) using the FCS function in chapter 1.2.
++++++++++++++++++++++++++++++++++++++++++++++++ 9. FCS Error handling:
NOTE: After successful transmission of data frame which client sends and receive of ACK (Above items 7 and 8), the client should generate a frame with wrong
checksum, filling FCS field with some data which is not calculated by FCS (Frame Check Sequence) function in chapter 1.2.
The AP (Access Point) should generate an error message for FCS (Frame Check Sequence) error after recalculation of checksum which recognizes this value is not equal to the received FCS (Frame Check Sequence).
AP (Access Point) generates the error message “FCS (Frame Check Sequence) Error” and displays on the screen.
      ***************************************************
10. Sending Multiple Frame Procedure:
Client sends five fragmented frames (Frame 1, 2, 3, 4, 5) which are fragments of a file to the AP.
Prior client sending the 5 frames, send one time the RTS frame with Duration ID =12, AP response CTS with Duration ID =11 (This procedure will allocate time for the 5 frames and ACKs transmissions)
For each DATA frame sent from client Duration ID will be decremented, and for each frame sent from AP Duration ID will be decremented.
The AP acknowledges with ACK frame the correct frame received from client by sending five ACK frames.
Set the parameters in IEEE 802.11 header properly for client and AP (see chapter 7 and 8) in addition you need to set the more fragment bit properly.
          CSEN 331 Programming Assignment
9

The client then sends another five fragmented frames (Frame 1, 2, 3, 4, 5) to the AP, emulating one correct frame and four frames with errors.
The server acknowledges with ACK each correct frame sent from client, and with corresponding error message displayed on the screen “No ACK Received for Frame No.X” for the frames with errors (Total of four error message).
The client will start an ack_timer at the time each frame is sent to AP, if the ACK frmae for each frame has not been received during ack_timer period by client before expiration of timer then client should retransmit again the frame that was sent before.
The timer can be set at 3 seconds (recommended) and a retry_ack_counter should be used for resending the frame. If the ACK for the frame does not arrive before the ack_timer times out, the client will retransmit the frame and restart the ack_timer, and the ack_timer should be reset for a total of 3 times (retry_ack_counter = 3).
If no ACK is received from the AP after resending the same frame 3 times, the client should generate the following message and display on the screen:
“No ACK received from AP”.
Error handling:
NOTE: All four error handling messages should be simulated and displayed on the screen, the error response messages should be included in a (.pdf, .png, .jpg) file and turned in with your source code.
  CSEN 331 Programming Assignment
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:ME1014代做、代寫 Matlab 程序設計
  • 下一篇:CS101 編程代寫、代做 java程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产精品日韩久久久| 国产一区亚洲一区| 国产日韩av高清| 韩国精品主播一区二区在线观看| 国产综合精品一区| 一本久道综合久久精品| 激情成人中文字幕| 午夜精品久久久久久久久久久久| 99精品99| 国产精品成人一区二区网站软件| 欧美区日韩区| 欧美精品一区二区三区蜜臀| 欧美精品久久天天躁| 久久久精品国产99久久精品芒果| 尤物99国产成人精品视频| 欧美a级理论片| 国产精品大片免费观看| 国产精品免费福利| 国产一区激情| 国产精品一区二区在线观看网站| 久久精品2019中文字幕| 欧美激情aaaa| 国产免费亚洲高清| 欧美视频一区二区三区…| 99国产精品久久久久久久成人热| 亚洲欧美日产图| 国产欧美一区二区精品忘忧草| 亚洲午夜久久久久久久久电影网| 久久国产色av| 亚洲欧美日韩一区| 日韩午夜视频在线观看| 国产一区二区日韩精品| 欧美视频中文一区二区三区在线观看| 国产婷婷色一区二区三区| 在线观看日韩欧美| 久久精品国产69国产精品亚洲| 亚洲日本成人在线观看| 久久综合九色综合久99| 午夜久久久久久| 国产一区欧美日韩| 亚洲欧美三级在线| 久久青青草原一区二区| 欧美电影免费观看高清| 国产精品九九久久久久久久| 欧美成人精品在线播放| 欧美va亚洲va香蕉在线| 国产欧美成人| 亚洲伊人一本大道中文字幕| 欧美电影打屁股sp| 国产精品观看| 欧美一级片一区| 欧美成人精品高清在线播放| 国产精品美女一区二区在线观看| 欧美深夜福利| 永久免费视频成人| 国产精品v日韩精品| 国产亚洲精品aa午夜观看| 久久久久久久网站| 国内一区二区在线视频观看| 欧美精品福利视频| 久久国产精品免费一区| 国产偷自视频区视频一区二区| 亚洲午夜电影| 亚洲综合色网站| 亚洲欧美激情视频在线观看一区二区三区| 亚洲午夜羞羞片| 亚洲激情视频网| 亚洲制服少妇| 午夜精品网站| 99国产精品99久久久久久粉嫩| 久久久xxx| 国产一区二区久久久| 黄色成人在线网址| 久久久精品日韩| 欧美华人在线视频| 国产一区二区成人久久免费影院| 欧美精品一区三区在线观看| 亚洲精品欧美精品| 亚洲国产精品va在线观看黑人| 亚洲美女在线看| 亚洲欧美日韩一区在线| 亚洲国产日韩综合一区| 亚洲日本电影| 国产一区深夜福利| 免费不卡亚洲欧美| 性欧美video另类hd性玩具| 麻豆国产va免费精品高清在线| 亚洲永久免费| 久久在线免费观看| 午夜精品久久久久久久白皮肤| 久久人人爽人人爽| 亚洲精品国产精品国产自| 亚洲欧美综合| 亚洲日本在线观看| 亚洲一区图片| 韩国一区二区三区美女美女秀| 国产一区二区三区精品欧美日韩一区二区三区| 亚洲欧美日本精品| aaa亚洲精品一二三区| 午夜精品久久久久久久久| 亚洲第一在线| 国产日韩欧美不卡在线| 欧美成人精品一区二区| 欧美三级第一页| 一区二区三区在线观看欧美| 欧美激情第1页| 在线观看欧美日本| 欧美精品一区二区久久婷婷| 欧美jizz19hd性欧美| 国产一区二区精品在线观看| 欧美国产欧美亚洲国产日韩mv天天看完整| 麻豆精品在线播放| 久久av资源网站| 国内成人精品2018免费看| 久久夜色精品| 欧美成人一区二区在线| 国产一区视频观看| 国产专区精品视频| 狂野欧美性猛交xxxx巴西| 欧美伊人久久久久久午夜久久久久| 亚洲美女黄色| 久久亚洲国产精品一区二区| 一区二区三区在线免费视频| 欧美sm重口味系列视频在线观看| 亚洲韩国日本中文字幕| 另类图片综合电影| 亚洲欧美日韩国产综合在线| 亚洲福利国产精品| 欧美在线视频播放| 欧美一区午夜视频在线观看| 亚洲高清不卡一区| 欧美午夜国产| 在线精品亚洲| 欧美少妇一区二区| 久热精品视频在线免费观看| 榴莲视频成人在线观看| 狠狠久久五月精品中文字幕| 国模叶桐国产精品一区| 亚洲国产成人精品久久| 亚洲欧美日韩在线高清直播| 国产精品露脸自拍| 欧美日韩情趣电影| 一区二区三区成人精品| 久久精品亚洲一区二区三区浴池| 欧美国产日韩免费| 久久综合一区| 亚洲高清不卡一区| 国产精品乱码一区二三区小蝌蚪| 国产精品美女诱惑| 欧美亚洲免费电影| 国产综合欧美在线看| 激情久久久久久久| 国模一区二区三区| 国产亚洲欧美日韩日本| 亚洲视频在线播放| 在线看日韩欧美| 性做久久久久久久久| 欧美激情影院| 国内精品久久久久久久97牛牛| 久久久久久久综合色一本| 午夜国产不卡在线观看视频| 国产精品ⅴa在线观看h| 黄色国产精品一区二区三区| 亚洲特级毛片|