日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CEG5301代做、MATLAB編程語言代寫

時間:2024-03-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CEG5301 Machine Learning with Applications:
Part I: Homework #3
Important note: the due date is 17/03/2024. Please submit the softcopy of your report
to the submission folder in CANVAS. Late submission is not allowed unless it is well
justified. Please supply the MATLAB code or Python Code in your answer if computer
experiment is involved.
Please note that the MATLAB toolboxes for RBFN and SOM are not well developed.
Please write your own codes to implement RBFN and SOM instead of using the
MATLAB toolbox.
Q1. Function Approximation with RBFN (10 Marks)
Consider using RBFN to approximate the following function:
𝑦𝑦 = 1.2 sin(𝜋𝜋𝜋𝜋) − cos(2.4𝜋𝜋𝜋𝜋) , 𝑓𝑓𝑓𝑓𝑓𝑓 w**9;w**9; ∈ [−1.6, 1.6]
The training set is constructed by dividing the range [−1.6, 1.6] using a uniform step
length 0.08, while the test set is constructed by dividing the range [−1.6, 1.6] using
a uniform step length 0.01. Assume that the observed outputs in the training set are
corrupted by random noise as follows.
𝑦𝑦(𝑖𝑖) = 1.2 sin 𝜋𝜋𝜋𝜋(𝑖𝑖)  − cos 2.4𝜋𝜋𝜋𝜋(𝑖𝑖)  + 0.3𝑛𝑛(𝑖𝑖)
where the random noise 𝑛𝑛(𝑖𝑖) is Gaussian noise with zero mean and stand deviation of
one, which can be generated by MATLAB command randn. Note that the test set is not
corrupted by noises. Perform the following computer experiments:
a) Use the exact interpolation method (as described on pages 17-26 in the slides of
lecture five) and determine the weights of the RBFN. Assume the RBF is Gaussian
function with standard deviation of 0.1. Evaluate the approximation performance of
the resulting RBFN using the test set.
 (3 Marks)
b) Follow the strategy of “Fixed Centers Selected at Random” (as described on page 38
in the slides of lecture five), randomly select 20 centers among the sampling points.
Determine the weights of the RBFN. Evaluate the approximation performance of the
resulting RBFN using test set. Compare it to the result of part a).
(4 Marks)
c) Use the same centers and widths as those determined in part a) and apply the
regularization method as described on pages 43-46 in the slides for lecture five. Vary
the value of the regularization factor and study its effect on the performance of RBFN.
(3 Marks)
2
Q2. Handwritten Digits Classification using RBFN (20 Marks)
In this task, you will build a handwritten digits classifier using RBFN. The training data
is provided in MNIST_M.mat. Each binary image is of size 28*28. There are 10
classes in MNIST_M.mat; please select two classes according to the last two different
digits of your matric number (e.g. A0642311, choose classes 3 and 1; A1234567,
choose classes 6 and 7). The images in the selected two classes should be assigned the
label “1” for this question’s binary classification task, while images in all the remaining
eight classes should be assigned the label “0”. Make sure you have selected the correct
2 classes for both training and testing. There will be some mark deduction for wrong
classesselected. Please state your handwritten digit classes for both training and testing.
In MATLAB, the following code can be used to load the training and testing data:
-------------------------------------------------------------------------------------------------------
load mnist_m.mat;
% train_data  training data, 784x1000 matrix
% train_classlabel  the labels of the training data, 1x1000 vector
% test_data  test data, 784x250 matrix
% train_classlabel  the labels of the test data, 1x250 vector
-------------------------------------------------------------------------------------------------------
After loading the data, you may view them using the code below:
-------------------------------------------------------------------------------------------------------
tmp=reshape(train_data(:,column_no),28,28);
imshow(tmp);
-------------------------------------------------------------------------------------------------------
To select a few classes for training, you may refer to the following code:
-------------------------------------------------------------------------------------------------------
trainIdx = find(train_classlabel==0 | train_classlabel==1 | train_classlabel==2); % find the
location of classes 0, 1, 2
Train_ClassLabel = train_classlabel(trainIdx);
Train_Data = train_data(:,trainIdx);
-------------------------------------------------------------------------------------------------------
Please use the following code to evaluate:
-------------------------------------------------------------------------------------------------------
TrAcc = zeros(1,1000);
TeAcc = zeros(1,1000);
thr = zeros(1,1000);
TrN = length(TrLabel);
TeN = length(TeLabel);
for i = 1:1000
 t = (max(TrPred)-min(TrPred)) * (i-1)/1000 + min(TrPred);
 thr(i) = t;

TrAcc(i) = (sum(TrLabel(TrPred<t)==0) + sum(TrLabel(TrPred>=t)==1)) / TrN;
TeAcc(i) = (sum(TeLabel(TePred<t)==0) + sum(TeLabel(TePred>=t)==1)) / TeN;
end
3
plot(thr,TrAcc,'.- ',thr,TeAcc,'^-');legend('tr','te');
-------------------------------------------------------------------------------------------------------
TrPred and TePred are determined by TrPred(j) = ∑ w**8;w**8;𝑖𝑖𝜑𝜑𝑖𝑖(TrData(: , j)) Ү**;Ү**;
𝑖𝑖=0 and
TePred(j) = ∑ w**8;w**8;𝑖𝑖𝜑𝜑𝑖𝑖(TeData(: , j)) Ү**;Ү**;
𝑖𝑖=0 where Ү**;Ү**; is the number of hidden neurons.
TrData and TeData are the training and testing data selected based on your matric
number. TrLabel and TeLabel are the ground-truth label information (Convert to {0,1}
before use!).
You are required to complete the following tasks:
a) Use Exact Interpolation Method and apply regularization. Assume the RBF is
Gaussian function with standard deviation of 100. Firstly, determine the weights of
RBFN without regularization and evaluate its performance; then vary the value of
regularization factor and study its effect on the resulting RBFNs’ performance.
(6 Marks)

b) Follow the strategy of “Fixed Centers Selected at Random” (as described in page 38
of lecture five). Randomly select 100 centers among the training samples. Firstly,
determine the weights of RBFN with widths fixed at an appropriate size and compare
its performance to the result of a); then vary the value of width from 0.1 to 10000 and
study its effect on the resulting RBFNs’ performance.
(8 Marks)

c) Try classical “K-Mean Clustering” (as described in pages 39-40 of lecture five) with
2 centers. Firstly, determine the weights of RBFN and evaluate its performance; then
visualize the obtained centers and compare them to the mean of training images of each
class. State your findings.
(6 Marks)
4
Q3. Self-Organizing Map (SOM) (20 Marks)
a) Write your own code to implement a SOM that maps a **dimensional output layer
of 40 neurons to a “hat” (sinc function). Display the trained weights of each output
neuron as points in a 2D plane, and plot lines to connect every topological adjacent
neurons (e.g. the 2nd neuron is connected to the 1st and 3rd neuron by lines). The training
points sampled from the “hat” can be obtained by the following code:
-------------------------------------------------------------------------------------------------------
x = linspace(-pi,pi,400);
trainX = [x; sinc(x)];  2x400 matrix
plot(trainX(1,:),trainX(2,:),'+r'); axis equal
-------------------------------------------------------------------------------------------------------
(3 Marks)
b) Write your own code to implement a SOM that maps a 2-dimensional output layer
of 64 (i.e. 8×8) neurons to a “circle”. Display the trained weights of each output neuron
as a point in the 2D plane, and plot lines to connect every topological adjacent neurons
(e.g. neuron (2,2) is connected to neuron (1,2) (2,3) (3,2) (2,1) by lines). The training
points sampled from the “circle” can be obtained by the following code:
-------------------------------------------------------------------------------------------------------
X = randn(800,2);
s2 = sum(X.^2,2);
trainX = (X.*repmat(1*(gammainc(s2/2,1).^(1/2))./sqrt(s2),1,2))';  2x800 matrix
plot(trainX(1,:),trainX(2,:),'+r'); axis equal
-------------------------------------------------------------------------------------------------------
(4 Marks)
c) Write your own code to implement a SOM that clusters and classifies handwritten
digits. The training data is provided in Digits.mat. The dataset consists of images in 5
classes, namely 0 to 4. Each image with the size of 28*28 is reshaped into a vector and
stored in the Digits.mat file. After loading the mat file, you may find the 4 matrix/arrays,
which respectively are train_data, train_classlabel, test_data and test_classlabel. There
are totally 1000 images in the training set and 100 images in the test set. Please omit 2
classes according to the last digit of your matric number with the following rule:
omitted class1 = mod(the last digit, 5), omitted_class2 = mod(the last digit+1, 5). For
example, if your matric number is A06423**, ignore classes mod(7,5)=2 and
mod(8,5)=3; A1234569, ignore classes 4 and 0.
Thus, you need to train a model for a 3-classes classification task. Make sure you have
selected the correct 3 classes for both training and testing. There will be some mark
deduction for wrong classes selected. Please state your handwritten digit classes for
both training and testing.
After loading the data, complete the following tasks:
c-1) Print out corresponding conceptual/semantic map of the trained SOM (as
described in page 24 of lecture six) and visualize the trained weights of each output
neuron on a 10×10 map (a simple way could be to reshape the weights of a neuron
5
into a 28×28 matrix, i.e. dimension of the inputs, and display it as an image). Make
comments on them, if any.
(8 Marks)
c-2) Apply the trained SOM to classify the test images (in test_data). The
classification can be done in the following fashion: input a test image to SOM, and
find out the winner neuron; then label the test image with the winner neuron’s label
(note: labels of all the output neurons have already been determined in c-1).
Calculate the classification accuracy on the whole test set and discuss your
findings.
(5 Marks)
The recommended values of design parameters are:
1. The size of the SOM is 1×40 for a), 8×8 for b), 10×10 for c).
2. The total iteration number N is set to be 500 for a) & b), 1000 for c). Only the
first (self-organizing) phase of learning is used in this experiment.
3. The learning rate 𝜂𝜂(𝑛𝑛) is set as:
𝜂𝜂(𝑛𝑛) = 𝜂𝜂0 exp  − 𝑛𝑛
𝜏𝜏2
  , 𝑛𝑛 = 0,1,2, …
where 𝜂𝜂0 is the initial learning rate and is set to be 0.1, 𝜏𝜏2 is the time constant
and is set to be N.
4. The time-varying neighborhood function is:
ℎ𝑗𝑗,𝑖𝑖(w**9;w**9;)(𝑛𝑛) = exp  − 𝑑𝑑𝑗𝑗,𝑖𝑖
2
2ҵ**;ҵ**;(𝑛𝑛)2  , 𝑛𝑛 = 0,1,2, …
where 𝑑𝑑𝑗𝑗,𝑖𝑖 is the distance between neuron j and winner i, ҵ**;ҵ**;(𝑛𝑛) is the effective
width and satisfies:
ҵ**;ҵ**;(𝑛𝑛) = ҵ**;ҵ**;0 exp  − 𝑛𝑛
𝜏𝜏1
  , 𝑛𝑛 = 0,1,2, …
where ҵ**;ҵ**;0 is the initial effective width and is set according to the size of output
layer’s lattice, 𝜏𝜏1 is the time constant and is chosen as 𝜏𝜏𝑖𝑖 = Ү**;Ү**;
log(ҵ**;ҵ**;0)
.
Again, please feel free to experiment with other design parameters which may be
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP26020、代做c/c++,Java編程設計
  • 下一篇:代寫ACS130、代做C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久三级视频| 久久精品一区二区三区不卡牛牛| 久热国产精品| 欧美日韩成人一区| 国内精品模特av私拍在线观看| 欧美在线观看天堂一区二区三区| 国产一区二区欧美| 激情六月婷婷久久| 亚洲精品国久久99热| 久久久久国产成人精品亚洲午夜| 亚洲国产欧洲综合997久久| 国产亚洲视频在线观看| 久久本道综合色狠狠五月| 国产精品视频1区| 免费人成网站在线观看欧美高清| 亚洲欧洲精品一区二区| 一二美女精品欧洲| 一道本一区二区| 欧美成人免费在线视频| 亚洲国产乱码最新视频| 老色鬼精品视频在线观看播放| 性欧美大战久久久久久久久| 欧美一区二区三区在线视频| 欧美成人三级在线| 欧美专区日韩专区| 亚洲日本乱码在线观看| 日韩视频在线一区二区| 国产乱码精品一区二区三区忘忧草| 久久成人精品无人区| 香蕉av福利精品导航| 亚洲人成网站999久久久综合| 欧美日韩国产成人在线观看| 欧美a级大片| 国内精品99| 国产精品毛片a∨一区二区三区|国| 亚洲网站视频| 香蕉视频成人在线观看| 亚洲午夜在线视频| 亚洲欧美日韩一区二区三区在线| 久久精品一区中文字幕| 午夜一级久久| 黄色在线成人| 亚洲日韩欧美视频| 欧美中日韩免费视频| 亚洲欧美电影在线观看| 亚洲一区二区三区免费在线观看| 亚洲精品一品区二品区三品区| 国产精品欧美日韩一区| 日韩视频在线免费| 欧美成人精品不卡视频在线观看| 欧美电影免费观看高清| 欧美激情一区二区三区在线视频观看| 一区免费观看视频| 欧美二区视频| 狠狠狠色丁香婷婷综合激情| 欧美日韩国产综合视频在线| 久久精品成人一区二区三区蜜臀| 欧美午夜精品久久久久免费视| 国产精品www色诱视频| 亚洲国产欧美久久| 亚洲一区二区成人在线观看| 亚洲国产第一| 一区在线观看| 亚洲永久免费观看| 欧美成人情趣视频| 一区二区三区产品免费精品久久75| 国产精品一区二区久激情瑜伽| 国产欧美日韩亚州综合| 国产日产高清欧美一区二区三区| 蜜臀99久久精品久久久久久软件| 欧美男人的天堂| 欧美精品在线视频| 久热精品视频在线观看| 欧美xxx成人| 欧美连裤袜在线视频| 欧美v日韩v国产v| 久久九九热re6这里有精品| 国产精品高潮呻吟| 免费在线国产精品| 欧美日韩在线不卡一区| 狠狠色伊人亚洲综合成人| 国产精品xxxxx| 欧美在线视频二区| 国产欧美亚洲日本| 女同性一区二区三区人了人一| 免费视频一区二区三区在线观看| 亚洲另类自拍| 国产精品久久国产三级国电话系列| 亚洲精品美女免费| 国产精品扒开腿做爽爽爽视频| 国内一区二区三区在线视频| 亚洲国产精品va| 黄色国产精品一区二区三区| 欧美激情五月| 欧美一区午夜精品| 国内自拍视频一区二区三区| 亚洲精品资源美女情侣酒店| 欧美婷婷六月丁香综合色| 亚洲毛片网站| 欧美日韩中文字幕在线| 好男人免费精品视频| 日韩亚洲欧美一区二区三区| 亚洲综合日韩在线| 欧美多人爱爱视频网站| 欧美一级在线视频| 欧美日韩中文另类| 影音先锋日韩有码| 亚洲欧美日韩国产综合精品二区| 小黄鸭视频精品导航| 亚洲午夜91| 亚洲精品日韩久久| 久久久精品性| 亚洲一区二区三区在线观看视频| 国内精品久久久| 免费看黄裸体一级大秀欧美| 国产精品一级久久久| 欧美日韩国产123区| 亚洲视频免费在线| 久久久久国色av免费观看性色| 欧美一区二区日韩一区二区| 国产精品夫妻自拍| 国产精品爱啪在线线免费观看| 欧美aa国产视频| 亚洲精品国产精品国产自| 国产伦精品一区二区三区| 亚洲视屏在线播放| 一区二区久久久久久| 亚洲无亚洲人成网站77777| 久久免费午夜影院| 性久久久久久久久久久久| 欧美激情黄色片| 亚洲国产成人不卡| 久久亚洲国产成人| 亚洲午夜久久久久久久久电影院| 欧美在线看片a免费观看| 一区二区三区视频观看| 欧美va亚洲va日韩∨a综合色| 亚洲网站在线播放| 欧美日韩中文字幕| 夜夜嗨av一区二区三区免费区| 亚洲日本黄色| 激情综合中文娱乐网| 亚洲一区二区免费| 欧美日韩一二区| 欧美激情性爽国产精品17p| 一色屋精品视频在线观看网站| 先锋a资源在线看亚洲| 久久久亚洲人| 免费在线观看日韩欧美| 国产日韩精品一区二区三区在线| 麻豆亚洲精品| 欧美日韩mp4| 欧美自拍偷拍午夜视频| 女女同性女同一区二区三区91| 国产亚洲精品一区二555| 亚洲精品麻豆| 欧美日韩亚洲高清| 欧美体内she精视频在线观看| 美国三级日本三级久久99| 国产精品国产a| 国产一区二区无遮挡| 夜夜嗨网站十八久久| 性欧美1819sex性高清| 欧美日韩国产首页|