日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做COMP9020 程序 Assignment 1

時間:2024-02-28  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


COMP**20 Assignment 1 2024 Term 1

  Due: Thursday, 29th February, 18:00 (AEDT)

Submission is through inspera. Your assignment will be automatically submitted at the above due date. If you manually submit before this time, you can reopen your submission and con- tinue until the deadline.

If you need to make a submission after the deadline, please use this link to request an extension: https://www.cse.unsw.edu.au/ cs**20/extension_request.html. Unless you are granted Special Consideration, a lateness penalty of 5% of raw mark per 24 hours or part thereof for a maximum of 5 days will apply. You can request an extension up to 5 days after the deadline.

Answers are expected to be provided either:

• In the text box provided using plain text, including unicode characters and/or the built-in formula editor (diagrams can be drawn using the built-in drawing tool); or

• as a pdf (e.g. using LATEX) – each question should be submitted on its own pdf, with at most one pdf per question.

Handwritten solutions will be accepted if unavoidable, but that we don’t recommend this ap- proach as the assessments are designed to familiarise students with typesetting mathematics in preparation for the final exam and for future courses.

Discussion of assignment material with others is permitted, but the work submitted must be your own in line with the University’s plagiarism policy.

  Problem 1

For x,y ∈ Z, we define the set

Sx,y ={mx+ny:m,n∈Z}

a) Provethatforallm,n,x,y,z∈Z,ifz|xandz|ythenz|(mx+ny).

(33 marks)

 b) Prove that 2 is the smallest positive element of S4,6.

Hint: To show that the element is the smallest, you will need to show that some values cannot be obtained.

Use the fact proven in part (a)

c) Find the smallest positive element of S−6,15.

For the following questions let d = gcd(x, y) and z be the smallest positive number in Sx,y, or 0 if there are no positive numbers in Sx,y.

d) ProvethatSx,y ⊆{n∈Z:d|n}.

e) Prove that d ≤ z.

f) Prove that z|x and z|y.

Hint: consider (x%z) and (y%z)

g) Prove that z ≤ d.

h) Using the answers from (e) and (g), explain why Sx,y ⊇ {n ∈ Z : d|n}

4 marks

4 marks

4 marks

3 marks

8 marks

2 marks

4 marks

1

4 marks

 

 Remark

The result that there exists m, n ∈ Z such that mx + ny = gcd(x, y) is known as Bézout’s identity. Two useful consequences of Bézout’s identity are:

• If c|x and c|y then c| gcd x, y (i.e. gcd(x, y) is a multiple of all common factors of x and y) • If gcd(x, y) = 1, then there is a unique w ∈ [0, y) such that xw =(y) 1 (i.e. multiplicative

inverses exist in modulo y, if x is coprime with y)

Problem 2 (16 marks) Proof Assistant: https://cgi.cse.unsw.edu.au/∼cs**20/cgi-bin/proof_assistant?A1

Prove, using the laws of set operations (and any results proven in lectures), the following identities hold for all sets A, B, C.

   a) (Annihilation) A ∩ ∅ = ∅

b) (A\C)∪(B\C) = (A∪B)\C

c) A ⊕ U = Ac

d) (DeMorgan’slaw)(A∩B)c =Ac∪Bc

4 marks

4 marks

4 marks

4 marks

4 marks

4 marks

8 marks

6 marks

 Problem 3

Let Σ = {a, b}, and let

(26 marks)

d) Prove that:

L2 ∩ L3 = (Σ=6)∗

negative even number, prove that:

L2L3 =Σ∗\{a,b}

L2 = (Σ=2)∗

and L3 = (Σ=3)∗.

a) Give a complete description of Σ=2 and Σ=3; and an informal description of L2 and L3.

b) Prove that for all w ∈ L1, length(w) =(2) 0.

c) Show that Σ2 and Σ3 give a counter-example to the proposition that for all sets X,Y ⊆ Σ∗, (X ∩ Y)∗ = X∗ ∩ Y∗.

e) Using the observation that every natural number n ≥ 2 is either even or 3 more than a non-

2

4 marks

 

Advice on how to do the assignment

Collaboration is encouraged, but all submitted work must be done individually without consulting someone else’s solutions in accordance with the University’s “Academic Dishonesty and Plagiarism” policies.

• Assignments are to be submitted in inspera.

• When giving answers to questions, we always would like you to prove/explain/motivate your answers. You are being assessed on your understanding and ability.

• Be careful with giving multiple or alternative answers. If you give multiple answers, then we will give you marks only for your worst answer, as this indicates how well you understood the question.

• Some of the questions are very easy (with the help of external resources). You may make use of external material provided it is properly referenced1 – however, answers that depend too heavily on external resources may not receive full marks if you have not adequately demonstrated ability/understanding.

• Questions have been given an indicative difficulty level:

Credit Distinction High distinction

This should be taken as a guide only. Partial marks are available in all questions, and achievable

by students of all abilities.

    Pass

 1Proper referencing means sufficient information for a marker to access the material. Results from the lectures or textbook can be used without proof, but should still be referenced.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:CSC173代做、Java編程設計代寫
  • 下一篇:莆田鞋正確拿貨方式:盤點十個莆田鞋拿貨渠道
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美另类99xxxxx| 国产精品视频xxxx| 国产麻豆午夜三级精品| 亚洲一区二区三区精品动漫| 欧美偷拍一区二区| 欧美一区二区三区男人的天堂| 国产一区视频网站| 一区二区三区视频在线| 久久综合久久久| 欧美va天堂| 在线观看欧美日本| 亚洲欧美国产77777| 国产精品久久国产愉拍| 欧美成人激情在线| 女仆av观看一区| 国产精品视频在线观看| 欧美色图麻豆| 欧美特黄a级高清免费大片a级| 美女福利精品视频| 欧美色综合天天久久综合精品| 久久在线免费| 激情成人亚洲| 亚洲第一中文字幕在线观看| 亚洲一区二区成人| 99在线精品视频在线观看| 国产精品久久一区二区三区| 亚洲午夜视频在线| 亚洲高清视频中文字幕| 亚洲精品网址在线观看| 亚洲一区二区三区在线视频| 麻豆国产精品va在线观看不卡| 久久久国产精彩视频美女艺术照福利| 免费不卡欧美自拍视频| 亚洲欧洲另类| 国产精品盗摄久久久| 亚洲欧美日韩国产综合精品二区| 极品裸体白嫩激情啪啪国产精品| 性欧美video另类hd性玩具| 欧美日韩亚洲免费| 欧美国产三区| 久久久久久一区二区三区| 国产精品裸体一区二区三区| 蜜月aⅴ免费一区二区三区| 亚洲欧美日韩国产| 欧美黄色一区| 欧美亚洲视频在线观看| 久久精品国产77777蜜臀| 国产在线日韩| 国产精品乱码| 午夜精品成人在线| 久久夜精品va视频免费观看| 欧美中文字幕精品| 国产老肥熟一区二区三区| 国产欧美精品xxxx另类| 欧美日韩成人一区二区三区| 欧美激情视频一区二区三区免费| 国产欧美精品xxxx另类| 久久福利电影| 99国产精品私拍| 久久久亚洲国产美女国产盗摄| 欧美亚洲一区二区三区| 国产一区深夜福利| 国产欧美一区二区精品仙草咪| 亚洲高清二区| 免费成人黄色| 免费观看日韩av| 伊人一区二区三区久久精品| 亚洲美女性视频| 久久精品在线播放| 欧美日韩精品伦理作品在线免费观看| 国产精品视频一二三| 欧美视频官网| 黄色一区二区在线观看| 亚洲麻豆av| 在线看国产日韩| 国产精品入口| 日韩网站免费观看| 亚洲高清视频的网址| 在线观看福利一区| 国产一区视频观看| 亚洲图片欧美午夜| 日韩一级成人av| 亚洲欧美日韩一区二区三区在线| 久久午夜视频| 国产一区二区福利| 欧美午夜精彩| 欧美一区二区大片| 亚洲网友自拍| 国产日产欧产精品推荐色| 欧美性开放视频| 久久精品av麻豆的观看方式| 欧美三级不卡| 中文av一区特黄| 国产精品自拍网站| 久久欧美肥婆一二区| 99www免费人成精品| 国产日韩一级二级三级| 欧美精品九九99久久| 99v久久综合狠狠综合久久| 欧美精品黄色| 国产日韩1区| 韩国视频理论视频久久| 性色av一区二区怡红| 中文无字幕一区二区三区| 国产精品国码视频| 国产一区二区三区在线观看网站| 久久久久久穴| 欧美日本簧片| 亚洲国产欧美日韩另类综合| 久久久国产成人精品| 欧美性大战久久久久| 麻豆九一精品爱看视频在线观看免费| 在线亚洲免费视频| 亚洲字幕在线观看| 欧美日韩亚洲91| 99亚洲伊人久久精品影院红桃| 欧美激情亚洲综合一区| 亚洲国产精品日韩| 在线观看视频一区二区| 欧美中文字幕第一页| 欧美精品久久一区二区| 亚洲视频一区二区| 亚洲女人天堂av| 久久嫩草精品久久久精品一| 欧美成人官网二区| 在线亚洲免费视频| 久久午夜电影| 欧美一区二区三区四区高清| 亚洲人成网在线播放| 在线日韩精品视频| 欧美在线观看视频| 国产一区二区观看| 在线视频日韩精品| 欧美一区二区成人| 国产三级精品在线不卡| 欧美日韩国产在线看| 99国产成+人+综合+亚洲欧美| 欧美日韩国产小视频在线观看| 欧美日韩日本网| 国产欧美日韩在线| 久久综合国产精品| 国产精品日韩精品| 欧美一级淫片播放口| 国产精品亚洲第一区在线暖暖韩国| 国产精品国产三级国产专播品爱网| 国产精品高清免费在线观看| 午夜在线一区二区| 亚洲一区不卡| 欧美视频精品在线观看| 国产精品卡一卡二卡三| 在线观看成人av电影| 久久久精品一品道一区| 欧美一级午夜免费电影| 一区二区三区.www| 亚洲午夜激情在线| 国产精品视频九色porn| 99人久久精品视频最新地址| 免费一级欧美片在线观看| 一区二区三区在线视频播放| 欧美日韩在线播放| 国产精品sm| 艳妇臀荡乳欲伦亚洲一区| 激情久久综合| 久久综合给合久久狠狠狠97色69|